Spaces:
Paused
Paused
Update src/pipelines/circular.py
Browse files
src/pipelines/circular.py
CHANGED
|
@@ -7,7 +7,7 @@ from src.util.params import *
|
|
| 7 |
|
| 8 |
@spaces.GPU(enable_queue=True)
|
| 9 |
def display_circular_images(
|
| 10 |
-
prompt, seed, num_inference_steps, num_images,
|
| 11 |
):
|
| 12 |
np.random.seed(seed)
|
| 13 |
text_embeddings = get_text_embeddings(prompt)
|
|
@@ -16,10 +16,10 @@ def display_circular_images(
|
|
| 16 |
latents_y = generate_latents(seed * np.random.randint(0, 100000))
|
| 17 |
|
| 18 |
scale_x = torch.cos(
|
| 19 |
-
torch.linspace(
|
| 20 |
).to(torch_device)
|
| 21 |
scale_y = torch.sin(
|
| 22 |
-
torch.linspace(
|
| 23 |
).to(torch_device)
|
| 24 |
|
| 25 |
noise_x = torch.tensordot(scale_x, latents_x, dims=0)
|
|
@@ -32,7 +32,7 @@ def display_circular_images(
|
|
| 32 |
for i in range(num_images):
|
| 33 |
progress(i / num_images)
|
| 34 |
image = generate_images(noise[i], text_embeddings, num_inference_steps)
|
| 35 |
-
images.append((image, "{}".format(i)))
|
| 36 |
|
| 37 |
progress(1, desc="Exporting as gif")
|
| 38 |
export_as_gif(images, filename="circular.gif")
|
|
@@ -42,7 +42,8 @@ def display_circular_images(
|
|
| 42 |
"Tab": "Circular",
|
| 43 |
"Prompt": prompt,
|
| 44 |
"Number of Steps around the Circle": num_images,
|
| 45 |
-
"Proportion of Circle":
|
|
|
|
| 46 |
"Number of Inference Steps per Image": num_inference_steps,
|
| 47 |
"Seed": seed,
|
| 48 |
}
|
|
@@ -50,4 +51,5 @@ def display_circular_images(
|
|
| 50 |
return images, "outputs/circular.gif", f"outputs/{fname}.zip"
|
| 51 |
|
| 52 |
|
|
|
|
| 53 |
__all__ = ["display_circular_images"]
|
|
|
|
| 7 |
|
| 8 |
@spaces.GPU(enable_queue=True)
|
| 9 |
def display_circular_images(
|
| 10 |
+
prompt, seed, num_inference_steps, num_images, start_degree, end_degree, progress=gr.Progress()
|
| 11 |
):
|
| 12 |
np.random.seed(seed)
|
| 13 |
text_embeddings = get_text_embeddings(prompt)
|
|
|
|
| 16 |
latents_y = generate_latents(seed * np.random.randint(0, 100000))
|
| 17 |
|
| 18 |
scale_x = torch.cos(
|
| 19 |
+
torch.linspace(start_degree, end_degree, num_images) * torch.pi / 180
|
| 20 |
).to(torch_device)
|
| 21 |
scale_y = torch.sin(
|
| 22 |
+
torch.linspace(start_degree, end_degree, num_images) * torch.pi / 180
|
| 23 |
).to(torch_device)
|
| 24 |
|
| 25 |
noise_x = torch.tensordot(scale_x, latents_x, dims=0)
|
|
|
|
| 32 |
for i in range(num_images):
|
| 33 |
progress(i / num_images)
|
| 34 |
image = generate_images(noise[i], text_embeddings, num_inference_steps)
|
| 35 |
+
images.append((image, "{}".format(i + 1)))
|
| 36 |
|
| 37 |
progress(1, desc="Exporting as gif")
|
| 38 |
export_as_gif(images, filename="circular.gif")
|
|
|
|
| 42 |
"Tab": "Circular",
|
| 43 |
"Prompt": prompt,
|
| 44 |
"Number of Steps around the Circle": num_images,
|
| 45 |
+
"Start Proportion of Circle": start_degree,
|
| 46 |
+
"End Proportion of Circle": end_degree,
|
| 47 |
"Number of Inference Steps per Image": num_inference_steps,
|
| 48 |
"Seed": seed,
|
| 49 |
}
|
|
|
|
| 51 |
return images, "outputs/circular.gif", f"outputs/{fname}.zip"
|
| 52 |
|
| 53 |
|
| 54 |
+
|
| 55 |
__all__ = ["display_circular_images"]
|