anycoder / backend_api.py
akhaliq's picture
akhaliq HF Staff
new UI
b42dfef
raw
history blame
17.5 kB
"""
FastAPI backend for AnyCoder - provides REST API endpoints
"""
from fastapi import FastAPI, HTTPException, Header, WebSocket, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from typing import Optional, List, Dict, AsyncGenerator
import json
import asyncio
from datetime import datetime
# Import only what we need, avoiding Gradio UI imports
import sys
import os
from huggingface_hub import InferenceClient
# Define models and languages here to avoid importing Gradio UI
AVAILABLE_MODELS = [
{"name": "Sherlock Dash Alpha", "id": "openrouter/sherlock-dash-alpha", "description": "Sherlock Dash Alpha model via OpenRouter"},
{"name": "MiniMax M2", "id": "MiniMaxAI/MiniMax-M2", "description": "MiniMax M2 model via HuggingFace InferenceClient with Novita provider"},
{"name": "DeepSeek V3.2-Exp", "id": "deepseek-ai/DeepSeek-V3.2-Exp", "description": "DeepSeek V3.2 Experimental via HuggingFace"},
{"name": "DeepSeek R1", "id": "deepseek-ai/DeepSeek-R1-0528", "description": "DeepSeek R1 model for code generation"},
{"name": "GPT-5", "id": "gpt-5", "description": "OpenAI GPT-5 via OpenRouter"},
{"name": "Gemini Flash Latest", "id": "gemini-flash-latest", "description": "Google Gemini Flash via OpenRouter"},
{"name": "Qwen3 Max Preview", "id": "qwen3-max-preview", "description": "Qwen3 Max Preview via DashScope API"},
]
LANGUAGE_CHOICES = ["html", "gradio", "transformers.js", "streamlit", "comfyui", "react"]
app = FastAPI(title="AnyCoder API", version="1.0.0")
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["http://localhost:3000", "http://localhost:3001"], # Frontend URLs
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Pydantic models for request/response
class CodeGenerationRequest(BaseModel):
query: str
language: str = "html"
model_id: str = "openrouter/sherlock-dash-alpha"
provider: str = "auto"
history: List[List[str]] = []
agent_mode: bool = False
class DeploymentRequest(BaseModel):
code: str
space_name: str
language: str
requirements: Optional[str] = None
class AuthStatus(BaseModel):
authenticated: bool
username: Optional[str] = None
message: str
class ModelInfo(BaseModel):
name: str
id: str
description: str
class CodeGenerationResponse(BaseModel):
code: str
history: List[List[str]]
status: str
# Mock authentication for development
# In production, integrate with HuggingFace OAuth
class MockAuth:
def __init__(self, token: Optional[str] = None):
self.token = token
# Extract username from dev token or use generic name
if token and token.startswith("dev_token_"):
# Extract username from dev token format: dev_token_<username>_<timestamp>
parts = token.split("_")
self.username = parts[2] if len(parts) > 2 else "user"
else:
self.username = "user" if token else None
def is_authenticated(self):
# Accept any token (for dev mode)
return bool(self.token)
def get_auth_from_header(authorization: Optional[str] = None):
"""Extract authentication from header"""
if not authorization:
return MockAuth(None)
# Handle "Bearer " prefix
if authorization.startswith("Bearer "):
token = authorization.replace("Bearer ", "")
else:
token = authorization
return MockAuth(token)
@app.get("/")
async def root():
"""Health check endpoint"""
return {"status": "ok", "message": "AnyCoder API is running"}
@app.get("/api/models", response_model=List[ModelInfo])
async def get_models():
"""Get available AI models"""
return [
ModelInfo(
name=model["name"],
id=model["id"],
description=model["description"]
)
for model in AVAILABLE_MODELS
]
@app.get("/api/languages")
async def get_languages():
"""Get available programming languages/frameworks"""
return {"languages": LANGUAGE_CHOICES}
@app.get("/api/auth/status")
async def auth_status(authorization: Optional[str] = Header(None)):
"""Check authentication status"""
auth = get_auth_from_header(authorization)
if auth.is_authenticated():
return AuthStatus(
authenticated=True,
username=auth.username,
message=f"Authenticated as {auth.username}"
)
return AuthStatus(
authenticated=False,
username=None,
message="Not authenticated"
)
@app.get("/api/generate")
async def generate_code(
query: str,
language: str = "html",
model_id: str = "openrouter/sherlock-dash-alpha",
provider: str = "auto",
authorization: Optional[str] = Header(None)
):
"""Generate code based on user query - returns streaming response"""
# Dev mode: No authentication required - just use server's HF_TOKEN
# In production, you would check real OAuth tokens here
async def event_stream() -> AsyncGenerator[str, None]:
"""Stream generated code chunks"""
try:
# Find the selected model
selected_model = None
for model in AVAILABLE_MODELS:
if model["id"] == model_id:
selected_model = model
break
if not selected_model:
selected_model = AVAILABLE_MODELS[0]
# Track generated code
generated_code = ""
# Use a simple system prompt
system_prompt = "You are a helpful AI assistant that generates code based on user requirements. Generate clean, well-commented code."
# Get the real model ID
actual_model_id = selected_model["id"]
# Determine which provider/API to use based on model ID
if actual_model_id.startswith("openrouter/"):
# OpenRouter models - use via OpenAI-compatible API
api_key = os.getenv("OPENROUTER_API_KEY") or os.getenv("HF_TOKEN")
client = InferenceClient(api_key=api_key, provider="openai", base_url="https://openrouter.ai/api/v1")
# Keep the model_id as-is for OpenRouter
elif actual_model_id == "MiniMaxAI/MiniMax-M2":
# MiniMax M2 via HuggingFace with Novita provider
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
error_data = json.dumps({
"type": "error",
"message": "HF_TOKEN environment variable not set. Please set it in your terminal.",
"timestamp": datetime.now().isoformat()
})
yield f"data: {error_data}\n\n"
return
# Use OpenAI client with HuggingFace router
from openai import OpenAI
client = OpenAI(
base_url="https://router.huggingface.co/v1",
api_key=hf_token,
default_headers={
"X-HF-Bill-To": "huggingface"
}
)
# Add :novita suffix for the API call
actual_model_id = "MiniMaxAI/MiniMax-M2:novita"
elif actual_model_id.startswith("deepseek-ai/"):
# DeepSeek models via HuggingFace
client = InferenceClient(token=os.getenv("HF_TOKEN"))
elif actual_model_id == "qwen3-max-preview":
# Qwen via DashScope (would need separate implementation)
# For now, fall back to HF
client = InferenceClient(token=os.getenv("HF_TOKEN"))
else:
# Default: HuggingFace models
client = InferenceClient(token=os.getenv("HF_TOKEN"))
# Prepare messages
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Generate a {language} application: {query}"}
]
# Stream the response
try:
stream = client.chat.completions.create(
model=actual_model_id,
messages=messages,
temperature=0.7,
max_tokens=10000,
stream=True
)
for chunk in stream:
# Check if choices array has elements before accessing
if (hasattr(chunk, 'choices') and
chunk.choices and
len(chunk.choices) > 0 and
hasattr(chunk.choices[0], 'delta') and
hasattr(chunk.choices[0].delta, 'content') and
chunk.choices[0].delta.content):
content = chunk.choices[0].delta.content
generated_code += content
# Send chunk as Server-Sent Event
event_data = json.dumps({
"type": "chunk",
"content": content,
"timestamp": datetime.now().isoformat()
})
yield f"data: {event_data}\n\n"
await asyncio.sleep(0) # Allow other tasks to run
# Send completion event
completion_data = json.dumps({
"type": "complete",
"code": generated_code,
"timestamp": datetime.now().isoformat()
})
yield f"data: {completion_data}\n\n"
except Exception as e:
error_data = json.dumps({
"type": "error",
"message": str(e),
"timestamp": datetime.now().isoformat()
})
yield f"data: {error_data}\n\n"
except Exception as e:
error_data = json.dumps({
"type": "error",
"message": f"Generation error: {str(e)}",
"timestamp": datetime.now().isoformat()
})
yield f"data: {error_data}\n\n"
return StreamingResponse(
event_stream(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no"
}
)
@app.post("/api/deploy")
async def deploy(
request: DeploymentRequest,
authorization: Optional[str] = Header(None)
):
"""Deploy generated code to HuggingFace Spaces"""
auth = get_auth_from_header(authorization)
if not auth.is_authenticated():
raise HTTPException(status_code=401, detail="Authentication required")
# Check if this is dev mode (no real token)
if auth.token and auth.token.startswith("dev_token_"):
# In dev mode, open HF Spaces creation page
import urllib.parse
base_url = "https://huggingface.co/new-space"
# Map language to SDK
language_to_sdk = {
"gradio": "gradio",
"streamlit": "docker",
"react": "docker",
"html": "static",
"transformers.js": "static",
"comfyui": "static"
}
sdk = language_to_sdk.get(request.language, "gradio")
params = urllib.parse.urlencode({
"name": request.space_name or "my-anycoder-app",
"sdk": sdk
})
# Prepare file content based on language
if request.language in ["html", "transformers.js", "comfyui"]:
file_path = "index.html"
else:
file_path = "app.py"
files_params = urllib.parse.urlencode({
"files[0][path]": file_path,
"files[0][content]": request.code
})
space_url = f"{base_url}?{params}&{files_params}"
return {
"success": True,
"space_url": space_url,
"message": "Dev mode: Please create the space manually",
"dev_mode": True
}
# Production mode with real token
try:
from huggingface_hub import HfApi
import tempfile
import uuid
# Get user token from header or use server token
user_token = auth.token if auth.token else os.getenv("HF_TOKEN")
if not user_token:
raise HTTPException(status_code=401, detail="No HuggingFace token available")
# Create API client
api = HfApi(token=user_token)
# Generate space name if not provided
space_name = request.space_name or f"anycoder-{uuid.uuid4().hex[:8]}"
repo_id = f"{auth.username}/{space_name}"
# Map language to SDK
language_to_sdk = {
"gradio": "gradio",
"streamlit": "docker",
"react": "docker",
"html": "static",
"transformers.js": "static",
"comfyui": "static"
}
sdk = language_to_sdk.get(request.language, "gradio")
# Create the space
try:
api.create_repo(
repo_id=repo_id,
repo_type="space",
space_sdk=sdk,
exist_ok=False
)
except Exception as e:
if "already exists" in str(e).lower():
# Space exists, we'll update it
pass
else:
raise
# Upload the code file
if request.language in ["html", "transformers.js", "comfyui"]:
file_name = "index.html"
else:
file_name = "app.py"
with tempfile.NamedTemporaryFile("w", suffix=f".{file_name.split('.')[-1]}", delete=False) as f:
f.write(request.code)
temp_path = f.name
try:
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=file_name,
repo_id=repo_id,
repo_type="space"
)
# For Gradio apps, also upload requirements.txt if needed
if request.language == "gradio":
# Simple requirements for basic Gradio app
requirements = "gradio>=4.0.0\n"
with tempfile.NamedTemporaryFile("w", suffix=".txt", delete=False) as req_f:
req_f.write(requirements)
req_temp_path = req_f.name
try:
api.upload_file(
path_or_fileobj=req_temp_path,
path_in_repo="requirements.txt",
repo_id=repo_id,
repo_type="space"
)
finally:
os.unlink(req_temp_path)
space_url = f"https://huggingface.co/spaces/{repo_id}"
return {
"success": True,
"space_url": space_url,
"message": f"✅ Deployed successfully to {repo_id}!"
}
finally:
os.unlink(temp_path)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Deployment failed: {str(e)}")
@app.websocket("/ws/generate")
async def websocket_generate(websocket: WebSocket):
"""WebSocket endpoint for real-time code generation"""
await websocket.accept()
try:
while True:
# Receive message from client
data = await websocket.receive_json()
query = data.get("query")
language = data.get("language", "html")
model_id = data.get("model_id", "openrouter/sherlock-dash-alpha")
# Send acknowledgment
await websocket.send_json({
"type": "status",
"message": "Generating code..."
})
# Mock code generation for now
await asyncio.sleep(0.5)
# Send generated code in chunks
sample_code = f"<!-- Generated {language} code -->\n<h1>Hello from AnyCoder!</h1>"
for i, char in enumerate(sample_code):
await websocket.send_json({
"type": "chunk",
"content": char,
"progress": (i + 1) / len(sample_code) * 100
})
await asyncio.sleep(0.01)
# Send completion
await websocket.send_json({
"type": "complete",
"code": sample_code
})
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
await websocket.send_json({
"type": "error",
"message": str(e)
})
await websocket.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run("backend_api:app", host="0.0.0.0", port=8000, reload=True)