File size: 24,103 Bytes
4e3e3d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import os
import gradio as gr
from google.cloud import videointelligence, speech, storage
import io
import json
import cv2
import torch
import clip
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
import openai
import wave
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import uvicorn
from pydantic import BaseModel
clip_loaded, blip_loaded = False, False
cred_file = "<PASTE THE PATH TO YOUR GOOGLE CREDENTIALS JSON FILE HERE>"
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = cred_file
os.environ["OPENAI_API_KEY"] = "<PASTE YOUR OPENAI KEY HERE>"
openai_api_key = "<PASTE YOUR OPENAI KEY HERE>"
def get_timestamps(video):
tiktok_vid = video
ffmpeg_command = """ffmpeg -i tiktokvideo -filter:v "select='gt(scene,0.2)',showinfo" -f null - 2> ffout"""
ffmpeg_command = ffmpeg_command.replace("tiktokvideo", tiktok_vid)
grep_command = """grep showinfo ffout | grep 'pts_time:[0-9.]*' -o | grep '[0-9]*\.[0-9]*' -o > timestamps.txt"""
os.system(ffmpeg_command)
os.system(grep_command)
with open('timestamps.txt', "r") as t:
times = [0] + [float(k) for k in t.read().split("\n") if k]
times_output = "Times: "
print(times)
for time in times:
times_output += str(time) + ", "
return times_output
def get_text_annotations(video, cred_file):
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = cred_file
# get text annotation results
# OCR
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.TEXT_DETECTION]
video_context = videointelligence.VideoContext()
with io.open(video, "rb") as file:
input_content = file.read()
operation = video_client.annotate_video(
request={
"features": features,
"input_content": input_content,
"video_context": video_context,
}
)
print("\nProcessing video for text detection.")
result = operation.result(timeout=300)
# The first result is retrieved because a single video was processed.
annotation_result = result.annotation_results[0]
# format text annotation results
# for each video-detected segment, get confidence
text_annotation_json = []
for text_annotation in annotation_result.text_annotations:
text_segment = text_annotation.segments[0]
start_time = text_segment.segment.start_time_offset
end_time = text_segment.segment.end_time_offset
frame = text_segment.frames[0]
time_offset = frame.time_offset
current_text_annotation_json = {
"text": text_annotation.text,
"start": start_time.seconds + start_time.microseconds * 1e-6,
"end": end_time.seconds + end_time.microseconds * 1e-6,
"confidence": text_segment.confidence,
"vertecies": []
}
for vertex in frame.rotated_bounding_box.vertices:
current_text_annotation_json["vertecies"].append([vertex.x, vertex.y])
text_annotation_json.append(current_text_annotation_json)
out = []
for text_annotation in annotation_result.text_annotations:
text_segment = text_annotation.segments[0]
start_time = text_segment.segment.start_time_offset
end_time = text_segment.segment.end_time_offset
start_time_s = start_time.seconds + start_time.microseconds * 1e-6
end_time_s = end_time.seconds + end_time.microseconds * 1e-6
confidence = text_segment.confidence
frame = text_segment.frames[0]
top_left = frame.rotated_bounding_box.vertices[0]
out.append([start_time_s, end_time_s, text_annotation.text, confidence, top_left.y])
simple_text = [k for k in sorted(out, key= lambda k: k[0] + k[4]) if k[3] > 0.95]
for s in simple_text:
print(s)
with open('annotation.json', 'w') as f:
json.dump(text_annotation_json, f, indent=4)
with open('simple_annotation.json', 'w') as f:
json.dump(simple_text, f, indent=4)
def transcribe_video(video, cred_file):
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = cred_file
if os.path.exists("output_audio.wav"):
os.remove("output_audio.wav")
else:
print("NOT THERE")
wav_cmd = f"ffmpeg -i {video} output_audio.wav"
os.system(wav_cmd)
print(os.path.exists("output_audio.wav"))
gcs_uri = upload_file_to_bucket("output_audio.wav", cred_file)
speech_client = speech.SpeechClient()
with open("output_audio.wav", "rb") as f:
audio_content = f.read()
audio = speech.RecognitionAudio(uri=gcs_uri)
sample_rate_hertz, audio_channel_count = wav_data("output_audio.wav")
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=sample_rate_hertz,
audio_channel_count=audio_channel_count,
language_code="en-US",
model="video",
enable_word_time_offsets=True,
enable_automatic_punctuation=True,
enable_word_confidence=True
)
request = speech.LongRunningRecognizeRequest(
config=config,
audio=audio
)
operation = speech_client.long_running_recognize(request=request)
print("Waiting for operation to complete...")
response = operation.result(timeout=600)
out = []
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
if len(alternative.words) > 0:
alt_start = alternative.words[0].start_time.seconds + alternative.words[0].start_time.microseconds * 1e-6
alt_end = alternative.words[-1].end_time.seconds + alternative.words[-1].end_time.microseconds * 1e-6
for word in alternative.words:
out.append([word.word,
word.start_time.seconds + word.start_time.microseconds * 1e-6,
word.end_time.seconds + word.end_time.microseconds * 1e-6,
word.confidence])
simple_text = [k for k in sorted(out, key= lambda k: k[1])]
for s in simple_text:
print(s)
with open("speech_transcriptions.json", "w") as f:
json.dump(simple_text, f, indent=4)
return simple_text
def wav_data(wav_file):
with wave.open(wav_file, 'rb') as wf:
sample_rate_hertz = wf.getframerate()
audio_channel_count = wf.getnchannels()
return sample_rate_hertz, audio_channel_count
def get_shot_frames(video, shot_text):
cam = cv2.VideoCapture(video)
fps = cam.get(cv2.CAP_PROP_FPS)
frame_count = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count/fps
with open('timestamps.txt', 'r') as t:
times = [0] + [float(k) for k in t.read().split('\n') if k]
print("Times: ", times)
with open('simple_annotation.json', 'r') as f:
simple_text = json.load(f)
with open('speech_transcriptions.json', 'r') as f:
transcriptions = json.load(f)
for i, time in enumerate(times):
current_time = time
next_time = times[i + 1] if i < len(times) - 1 else duration
rel_text = [s for s in simple_text if s[0] >= current_time and s[0] < next_time]
plain_rel_text = ' '.join([s[2] for s in rel_text])
rel_transcriptions = [t for t in transcriptions if t[1] >= current_time and t[1] < next_time]
plain_transcriptions = ' '.join([t[0] for t in rel_transcriptions])
shot_text.append({
"start": current_time,
"end": next_time,
"text_on_screen": plain_rel_text,
"transcript_text": plain_transcriptions
})
frames = []
for i, shot in enumerate(shot_text):
keyframe_time = (shot["end"] - shot["start"])/2 + shot["start"]
cam.set(1, int(fps * (keyframe_time)))
ret, frame = cam.read()
if ret:
cv2.imwrite('shot' + str(i) + '.png', frame)
frame_copy = Image.fromarray(frame).convert('RGB')
frames.append(frame_copy)
return frames
def load_clip_model():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
clip_model, preprocess = clip.load('ViT-B/32', device=device)
return clip_model, preprocess, device
def clip_score(fn, text_list, clip_model, preprocess, clip_device):
fn.show()
image = preprocess(fn).unsqueeze(0).to(clip_device)
text = clip.tokenize(text_list).to(clip_device)
with torch.no_grad():
image_features = clip_model.encode_image(image)
text_features = clip_model.encode_text(text)
logits_per_image, logits_per_text = clip_model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
return probs
def load_blip_model():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
processor = Blip2Processor.from_pretrained('Salesforce/blip2-flan-t5-xxl')
model = Blip2ForConditionalGeneration.from_pretrained(
'Salesforce/blip2-flan-t5-xxl', torch_dtype=torch.float16
)
model = model.to(device)
return model, processor, device
def run_blip(shot_text, frames, model, processor, device, clip_model, preprocess, clip_device):
# get a caption for each image
for i, shot in enumerate(shot_text):
if not os.path.exists(f"shot{i}.png"):
shot_text[i]["image_captions"] = ["" for _ in range(5)]
shot_text[i]["image_captions_clip"] = [{"text": "", "score": 0.0} for _ in range(5)]
continue
image = Image.open(f"shot{i}.png").convert('RGB')
with torch.no_grad():
# nucleus sampling
gen_texts = []
for j in range(5):
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(**inputs, min_length=5, max_length=20, do_sample=True, top_p=0.9)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
gen_texts.append(generated_text)
image.show()
shot_text[i]["image_captions"] = [gen_texts[j] for j in range(len(gen_texts))]
print(shot_text[i]["image_captions"])
clip_scores = clip_score(image.copy(), shot_text[i]["image_captions"], clip_model, preprocess, clip_device)[0]
print(clip_scores)
shot_text[i]["image_captions_clip"] = [{"text": shot_text[i]["image_captions"][j],
"score": float(clip_scores[j])} for j in range(len(shot_text[i]["image_captions"]))]
shot_text[i]["image_captions_clip"] = sorted(shot_text[i]["image_captions_clip"], key=lambda x: x["score"] * -1)
for s in shot_text[i]["image_captions_clip"]:
print(s)
shot_text[i]["image_captions"] = [t["text"] for t in shot_text[i]["image_captions_clip"] if "caption" not in t["text"]]
for i, shot in enumerate(shot_text):
if os.path.exists(f"shot{i}.png"):
os.remove(f"shot{i}.png")
return shot_text
def get_summaries(summary_input, openai_key):
gpt_system_prompt = f'''Your task is to generate a summary paragraph for an entire short-form video based on data extracted from the video. Your summary must be a holistic description of the full video. \n
The text in quotations defines the format of the data that I will provide you. The video data comprises of data extracted from all shots of the video.\n
The data is formatted in the structure defined in the quotations:\n
"\n
SHOT NUMBER
Duration: the number of seconds that the shot lasts
Text on screen: Any text that appears in the shot
Shot audio transcript: Any speech that is in the shot
Shot description: A short visual description of what is happening in the shot
"\n
'''
gpt_user_prompt = f'''Perform this video summarization task for the video below, where the data is delimited by triple quotations.\n
Video: \n"""{summary_input}"""\n '''
messages = [{"role": "system", "content": gpt_system_prompt},
{"role": "user", "content": gpt_user_prompt}]
responses = []
response = openai.ChatCompletion.create(
model='gpt-4',
messages=messages
)
messages.append(response.choices[0].message)
responses.append(response.choices[0].message["content"])
for word_limit in [50, 25, 10]:
condense_prompt = f'''Condense the summary below such that the response adheres to a {word_limit} word limit.\n
Summary: """ {response.choices[0].message["content"]} """\n'''
messages.append({"role": "user", "content": condense_prompt})
response = openai.ChatCompletion.create(
model='gpt-4',
messages=messages
)
messages.append(response.choices[0].message)
responses.append(response.choices[0].message["content"])
return responses
def get_shot_summaries(summary_input, openai_key):
gpt_system_prompt = f'''Your task is to generate a summary for each shot of a short-form video based on data extracted from the video.\n
The text in quotations defines the format of the data that I will provide you. The video data comprises of data extracted from all shots of the video.\n
The data is formatted in the structure defined in the quotations:\n
"\n
SHOT NUMBER
Duration: the number of seconds that the shot lasts
Text on screen: Any text that appears in the shot
Shot audio transcript: Any speech that is in the shot
Shot description: A short visual description of what is happening in the shot
"\n
All of the summaries you create must satisfy the following constraints:\n
1. If the field for text on screen is empty, do not include references to text on screen in the summary.\n
2. If the field for shot audio transcript is empty, do not include references to shot audio transcript in the summary.\n
3. If the field for shot description is empty, do not include references to the shot description in the summary.\n
4. If the field for shot description is empty, do not include references to shot description in the summary.\n
5. Do not include references to Tiktok logos or Tiktok usernames in the summary.\n
There must be a summary for every shot in the data.
Provide the summaries in a newline-separated format. There must be exactly one summary for every shot.\n
You must strictly follow the format inside the quotations.\n
"Your first summary\n
Your second summary\n
Your third summary\n
More of your summaries...\n
Your last summary\n
"
'''
gpt_user_prompt = f'''Perform this summarization task for the video below, where the data is delimited by triple quotations.\n
Video: \n"""{summary_input}"""\n '''
messages = [{"role": "system", "content": gpt_system_prompt},
{"role": "user", "content": gpt_user_prompt}]
responses = []
response = openai.ChatCompletion.create(
model='gpt-4',
messages=messages
)
messages.append(response.choices[0].message)
responses.append(response.choices[0].message["content"])
responses[0] = responses[0].strip()
shot_summary_list = [shot_summ.strip().strip('[]') for shot_summ in responses[0].split("\n")
if shot_summ.strip().strip('[]') != "" and shot_summ.strip().strip('[]') != " "]
print(responses[0])
print()
print(shot_summary_list)
print()
return shot_summary_list
def upload_file_to_bucket(filename, cred_file):
storage_client = storage.Client.from_service_account_json(
cred_file,
project="short-video-descriptions")
bucket_name = "short-video-descriptions"
destination_blob_name = filename
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(destination_blob_name)
blob.upload_from_filename(filename)
return f"gs://{bucket_name}/{destination_blob_name}"
def blob_exists(filename, cred_file):
storage_client = storage.Client.from_service_account_json(
cred_file,
project="short-video-descriptions")
bucket_name = 'short-video-descriptions'
bucket = storage_client.bucket(bucket_name)
stats = storage.Blob(bucket=bucket, name=filename).exists(storage_client)
return stats
def del_blob(blob_name, cred_file):
storage_client = storage.Client.from_service_account_json(
cred_file,
project="short-video-descriptions")
bucket = storage_client.bucket("short-video-descriptions")
blob = bucket.blob(blob_name)
generation_match_precondition = None
# Optional: set a generation-match precondition to avoid potential race conditions
# and data corruptions. The request to delete is aborted if the object's
# generation number does not match your precondition.
blob.reload() # Fetch blob metadata to use in generation_match_precondition.
generation_match_precondition = blob.generation
blob.delete(if_generation_match=generation_match_precondition)
print(f"Blob {blob_name} deleted.")
def get_summary_input(shot_text):
summ_input = ""
for i, s in enumerate(shot_text):
summ_input += f"SHOT {i + 1}\n"
summ_input += f"Duration: {round(s['end'] - s['start'])} seconds\n"
summ_input += f"Text on screen: {s['text_on_screen']}\n"
summ_input += f"Shot audio transcript: {s['transcript_text']}\n"
summ_input += f"Shot description: {s['image_captions'][0] if len(s['image_captions']) > 0 else ''}\n"
summ_input += "\n"
return summ_input
def get_video_data(video, transcript, cred_file):
shot_text = []
timestamps_output = get_timestamps(video)
get_text_annotations(video, cred_file.name)
transcribe_video(video, cred_file.name)
frames = get_shot_frames(video, shot_text)
shot_text = run_blip(shot_text, frames, model, processor, device, clip_model, preprocess, clip_device)
return shot_text
def get_video_information(video, cred_file, openai_key):
shot_text = []
timestamps_output = get_timestamps(video)
get_text_annotations(video, cred_file.name)
transcribe_video(video, cred_file.name)
frames = get_shot_frames(video, shot_text)
shot_text = run_blip(shot_text, frames, model, processor, device,
clip_model, preprocess, clip_device)
print("FINAL INPUT")
print(shot_text)
with open('cur_shots.json', 'w') as f:
json.dump(shot_text, f, indent=4)
summary_input = get_summary_input(shot_text)
summaries = get_summaries(summary_input, openai_key)
print("ALL SUMMARIES")
for summary in summaries:
print(summary)
return (shot_text, summary_input) + (*summaries,)
def get_per_shot_information(video, cred_file, openai_key):
shot_text = []
timestamps_output = get_timestamps(video)
get_text_annotations(video, cred_file.name)
transcribe_video(video, cred_file.name)
frames = get_shot_frames(video, shot_text)
# vtt_content = transcribe_audio_google(video)
# get_audio_transcript("transcribed_captions.vtt", shot_text)
shot_text = run_blip(shot_text, frames, model, processor, device,
clip_model, preprocess, clip_device)
print("FINAL INPUT")
print(shot_text)
with open('cur_shots.json', 'w') as f:
json.dump(shot_text, f, indent=4)
summary_input = get_summary_input(shot_text)
per_shot_summaries = get_shot_summaries(summary_input, openai_key)
per_shot_data = create_per_shot_dict(shot_text, per_shot_summaries)
return (per_shot_data, per_shot_summaries, summary_input)
def create_per_shot_dict(shot_text, per_shot_summaries):
for elem in per_shot_summaries:
print(elem)
per_shot_data = []
for i, s in enumerate(shot_text):
cur_summ = ""
if i < len(per_shot_summaries):
cur_summ = per_shot_summaries[i]
per_shot_data.append({
"start": s["start"],
"end": s["end"],
"text_on_screen": s["text_on_screen"],
"per_shot_summaries": cur_summ
})
return per_shot_data
with gr.Blocks() as demo:
with gr.Row():
video = gr.Video(label='Video To Describe', interactive=True)
with gr.Column():
api_cred_file = gr.File(label='Google API Credentials File', file_types=['.json'])
openai_key = gr.Textbox(label="OpenAI API Key")
with gr.Row():
summary_btn = gr.Button("Summarize Full Video")
summary_per_shot_btn = gr.Button("Summarize Each Shot")
with gr.Row():
summary_input = gr.Textbox(label="Extracted Video Data")
with gr.Row():
summary = gr.Textbox(label='Summary')
with gr.Column():
summary_10 = gr.Textbox(label='10-word Summary')
summary_25 = gr.Textbox(label='25-word Summary')
summary_50 = gr.Textbox(label='50-word Summary')
with gr.Row():
per_shot_summaries = gr.Textbox(label="Per Shot Summaries")
with gr.Row():
shot_data = gr.JSON(label='Shot Data')
# inputs = [video, transcript, api_cred_file, openai_key]
inputs = [video, api_cred_file, openai_key]
outputs = [shot_data, summary_input, summary, summary_50, summary_25, summary_10]
summary_btn.click(fn=get_video_information, inputs=inputs, outputs=outputs)
summary_per_shot_btn.click(fn=get_per_shot_information, inputs=inputs, outputs=[shot_data, per_shot_summaries, summary_input])
def analyze_video(video_id: str):
shot_text = []
video_path = f"temporary_uploads/{video_id}.mp4"
timestamps_output = get_timestamps(video_path)
get_text_annotations(video_path, cred_file)
transcribe_video(video_path, cred_file)
frames = get_shot_frames(video_path, shot_text)
shot_text = run_blip(shot_text, frames, model, processor, device, clip_model, preprocess, clip_device)
return shot_text
def summarize_video(video_id: str):
video_path = f"temporary_uploads/{video_id}.mp4"
shot_text = analyze_video(video_id)
summary_input = get_summary_input(shot_text)
summaries = get_summaries(summary_input, openai_api_key)
summary_json = {
"video_description": summaries[0],
"summary_10": summaries[3],
"summary_25": summaries[2],
"summary_50": summaries[1]
}
return summary_json
def summarize_shots(video_id: str):
video_path = f"temporary_uploads/{video_id}.mp4"
shot_text = analyze_video(video_id)
summary_input = get_summary_input(shot_text)
per_shot_summaries = get_shot_summaries(summary_input, "")
per_shot_data = create_per_shot_dict(shot_text, per_shot_summaries)
return per_shot_data
app = FastAPI()
app = gr.mount_gradio_app(app, demo, path="/gradio")
@app.get("/")
async def read_main():
return {"message": "Welcome to ShortVideoA11y! Go to https://utcs-hci-short-video-descriptions.hf.space/gradio for an interactive demo!"}
@app.get("/getVideoData/{video_id}")
async def create_video_data(video_id: str):
try:
shot_text = analyze_video(video_id)
return JSONResponse(content=shot_text)
except Exception as e:
error_content = {"error": str(e)}
return JSONResponse(content=error_content, status_code=400)
@app.get("/getShotSummaries/{video_id}")
async def create_shot_summaries(video_id: str):
per_shot_data = summarize_shots(video_id)
return JSONResponse(content=per_shot_data)
@app.get("/getVideoSummary/{video_id}")
async def create_video_summaries(video_id: str):
vid_summaries = summarize_video(video_id)
return JSONResponse(content=vid_summaries)
demo.queue()
if not clip_loaded:
clip_model, preprocess, clip_device = load_clip_model()
clip_loaded = True
if not blip_loaded:
model, processor, device = load_blip_model()
blip_loaded = True
|