Spaces:
Restarting
Restarting
Update modules/local_llm.py
Browse files- modules/local_llm.py +87 -51
modules/local_llm.py
CHANGED
|
@@ -1,71 +1,107 @@
|
|
| 1 |
-
# modules/local_llm.py
|
| 2 |
import os
|
| 3 |
from loguru import logger
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
|
|
|
|
| 6 |
MODEL_DIR = "/app/models/hermes-7b"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
class LocalLLM:
|
| 9 |
def __init__(self):
|
| 10 |
self.generator = None
|
| 11 |
-
self.
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
self.generator = None
|
| 20 |
-
return
|
| 21 |
-
|
| 22 |
-
if not any(f.endswith((".safetensors", ".bin")) for f in os.listdir(MODEL_DIR)):
|
| 23 |
-
logger.error("NENHUM SHARD ENCONTRADO! RECONSTRUIR COM DOCKERFILE!")
|
| 24 |
-
self.generator = None
|
| 25 |
-
return
|
| 26 |
-
|
| 27 |
-
offload_dir = "/tmp/offload"
|
| 28 |
-
os.makedirs(offload_dir, exist_ok=True)
|
| 29 |
-
|
| 30 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=True)
|
| 31 |
-
|
| 32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
-
MODEL_DIR,
|
| 34 |
-
device_map="cpu",
|
| 35 |
-
torch_dtype="float16",
|
| 36 |
-
low_cpu_mem_usage=True,
|
| 37 |
-
offload_folder=offload_dir,
|
| 38 |
-
offload_state_dict=True
|
| 39 |
-
)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
"text-generation",
|
| 43 |
-
model=model,
|
| 44 |
-
tokenizer=tokenizer,
|
| 45 |
-
max_new_tokens=256,
|
| 46 |
-
temperature=0.8,
|
| 47 |
-
do_sample=True,
|
| 48 |
-
repetition_penalty=1.1,
|
| 49 |
-
return_full_text=False
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def is_available(self) -> bool:
|
| 60 |
return self.generator is not None
|
| 61 |
|
| 62 |
def generate(self, prompt: str, max_tokens: int = 256, temperature: float = 0.8) -> str:
|
| 63 |
if not self.is_available():
|
| 64 |
-
return "Desculpa, kota... o modelo
|
| 65 |
|
| 66 |
try:
|
| 67 |
-
logger.info(f"[
|
| 68 |
-
|
| 69 |
output = self.generator(
|
| 70 |
prompt,
|
| 71 |
max_new_tokens=max_tokens,
|
|
@@ -75,11 +111,11 @@ class LocalLLM:
|
|
| 75 |
return_full_text=False
|
| 76 |
)
|
| 77 |
text = output[0]["generated_text"].strip()
|
| 78 |
-
logger.info(f"[
|
| 79 |
return text
|
| 80 |
except Exception as e:
|
| 81 |
-
logger.error(f"
|
| 82 |
return "Bué, deu pau no Hermes local..."
|
| 83 |
|
| 84 |
-
# EXPORTA
|
| 85 |
HermesLLM = LocalLLM
|
|
|
|
| 1 |
+
# modules/local_llm.py
|
| 2 |
import os
|
| 3 |
from loguru import logger
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
|
| 6 |
+
# === CONFIGURAÇÕES ===
|
| 7 |
MODEL_DIR = "/app/models/hermes-7b"
|
| 8 |
+
FINETUNED_PATH = "/app/data/finetuned_hermes"
|
| 9 |
+
|
| 10 |
+
# === SINGLETON GLOBAL (COMPARTILHADO COM treinamento.py) ===
|
| 11 |
+
_HERMES_GLOBAL = None
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _get_hermes_singleton():
|
| 15 |
+
"""Carrega ou retorna Hermes com LoRA (singleton global)"""
|
| 16 |
+
global _HERMES_GLOBAL
|
| 17 |
+
if _HERMES_GLOBAL is not None:
|
| 18 |
+
logger.debug("Reusando Hermes 7B global (local_llm)")
|
| 19 |
+
return _HERMES_GLOBAL
|
| 20 |
+
|
| 21 |
+
logger.info("Carregando Hermes 7B UMA VEZ (local + finetune)...")
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
if not os.path.exists(f"{MODEL_DIR}/config.json"):
|
| 25 |
+
logger.error("config.json NÃO ENCONTRADO!")
|
| 26 |
+
return None
|
| 27 |
+
|
| 28 |
+
# Verifica shards
|
| 29 |
+
shards = [f for f in os.listdir(MODEL_DIR) if f.endswith(".safetensors")]
|
| 30 |
+
if len(shards) != 4:
|
| 31 |
+
logger.error(f"APENAS {len(shards)} SHARDS .safetensors! FALTANDO!")
|
| 32 |
+
return None
|
| 33 |
+
|
| 34 |
+
# Carrega tokenizer
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR, use_fast=True)
|
| 36 |
+
if tokenizer.pad_token is None:
|
| 37 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 38 |
+
|
| 39 |
+
# Carrega base model (CPU, low mem)
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
MODEL_DIR,
|
| 42 |
+
device_map="cpu",
|
| 43 |
+
torch_dtype="float16",
|
| 44 |
+
low_cpu_mem_usage=True,
|
| 45 |
+
offload_folder="/tmp/offload",
|
| 46 |
+
offload_state_dict=True
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Carrega LoRA se existir
|
| 50 |
+
if os.path.exists(f"{FINETUNED_PATH}/adapter_config.json"):
|
| 51 |
+
from peft import PeftModel
|
| 52 |
+
logger.info("Carregando LoRA finetuned...")
|
| 53 |
+
model = PeftModel.from_pretrained(model, FINETUNED_PATH)
|
| 54 |
+
logger.info("LoRA ANGOLANO CARREGADO!")
|
| 55 |
+
else:
|
| 56 |
+
logger.info("Nenhum LoRA encontrado. Usando base.")
|
| 57 |
+
|
| 58 |
+
_HERMES_GLOBAL = (model, tokenizer)
|
| 59 |
+
logger.info("Hermes 7B GLOBAL carregado com sucesso!")
|
| 60 |
+
return _HERMES_GLOBAL
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error(f"Erro ao carregar Hermes global: {e}")
|
| 64 |
+
import traceback
|
| 65 |
+
logger.error(traceback.format_exc())
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
|
| 69 |
class LocalLLM:
|
| 70 |
def __init__(self):
|
| 71 |
self.generator = None
|
| 72 |
+
self._load_pipeline()
|
| 73 |
|
| 74 |
+
def _load_pipeline(self):
|
| 75 |
+
result = _get_hermes_singleton()
|
| 76 |
+
if not result:
|
| 77 |
+
logger.error("Hermes não carregado. Pipeline indisponível.")
|
| 78 |
+
self.generator = None
|
| 79 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
model, tokenizer = result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
self.generator = pipeline(
|
| 84 |
+
"text-generation",
|
| 85 |
+
model=model,
|
| 86 |
+
tokenizer=tokenizer,
|
| 87 |
+
max_new_tokens=256,
|
| 88 |
+
temperature=0.8,
|
| 89 |
+
do_sample=True,
|
| 90 |
+
repetition_penalty=1.1,
|
| 91 |
+
return_full_text=False,
|
| 92 |
+
device_map="cpu"
|
| 93 |
+
)
|
| 94 |
+
logger.info("Pipeline LOCAL conectado ao Hermes com LoRA!")
|
| 95 |
|
| 96 |
def is_available(self) -> bool:
|
| 97 |
return self.generator is not None
|
| 98 |
|
| 99 |
def generate(self, prompt: str, max_tokens: int = 256, temperature: float = 0.8) -> str:
|
| 100 |
if not self.is_available():
|
| 101 |
+
return "Desculpa, kota... o modelo tá off."
|
| 102 |
|
| 103 |
try:
|
| 104 |
+
logger.info(f"[LOCAL] Gerando: max_tokens={max_tokens}, temp={temperature}")
|
|
|
|
| 105 |
output = self.generator(
|
| 106 |
prompt,
|
| 107 |
max_new_tokens=max_tokens,
|
|
|
|
| 111 |
return_full_text=False
|
| 112 |
)
|
| 113 |
text = output[0]["generated_text"].strip()
|
| 114 |
+
logger.info(f"[LOCAL] Resposta: {text[:60]}...")
|
| 115 |
return text
|
| 116 |
except Exception as e:
|
| 117 |
+
logger.error(f"Erro na geração local: {e}")
|
| 118 |
return "Bué, deu pau no Hermes local..."
|
| 119 |
|
| 120 |
+
# EXPORTA PARA api.py
|
| 121 |
HermesLLM = LocalLLM
|