Spaces:
Running
Running
Update modules/local_llm.py
Browse files- modules/local_llm.py +57 -129
modules/local_llm.py
CHANGED
|
@@ -1,138 +1,66 @@
|
|
| 1 |
-
# modules/
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import datetime
|
| 5 |
-
from typing import Dict, Optional, Any, List
|
| 6 |
-
from flask import Flask, Blueprint, request, jsonify
|
| 7 |
from loguru import logger
|
| 8 |
-
import google.generativeai as genai
|
| 9 |
-
from mistralai import Mistral
|
| 10 |
-
from .local_llm import LlamaLLM
|
| 11 |
-
from .contexto import Contexto
|
| 12 |
-
from .database import Database
|
| 13 |
-
from .treinamento import Treinamento
|
| 14 |
-
from .exemplos_naturais import ExemplosNaturais
|
| 15 |
-
import modules.config as config
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
class
|
| 19 |
-
def __init__(self
|
| 20 |
-
self.
|
| 21 |
-
self.
|
| 22 |
-
|
| 23 |
-
if key not in self._store: return False
|
| 24 |
-
_, expires = self._store[key]
|
| 25 |
-
if time.time() > expires: del self._store[key]; return False
|
| 26 |
-
return True
|
| 27 |
-
def __setitem__(self, key, value):
|
| 28 |
-
self._store[key] = (value, time.time() + self.ttl)
|
| 29 |
-
def __getitem__(self, key):
|
| 30 |
-
if key not in self: raise KeyError(key)
|
| 31 |
-
return self._store[key][0]
|
| 32 |
|
| 33 |
-
|
| 34 |
-
class LLMManager:
|
| 35 |
-
def __init__(self, config_instance):
|
| 36 |
-
self.config = config_instance
|
| 37 |
-
self.mistral_client = None
|
| 38 |
-
self.gemini_model = None
|
| 39 |
-
self.llama_llm = self._import_llama()
|
| 40 |
-
self._setup_providers()
|
| 41 |
-
self.providers = []
|
| 42 |
-
if self.mistral_client: self.providers.append('mistral')
|
| 43 |
-
if self.gemini_model: self.providers.append('gemini')
|
| 44 |
-
if self.llama_llm and self.llama_llm.is_available(): self.providers.append('llama')
|
| 45 |
-
logger.info(f"Provedores ativos: {self.providers or 'NENHUM'}")
|
| 46 |
-
|
| 47 |
-
def _import_llama(self):
|
| 48 |
try:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
if key:
|
| 58 |
-
try:
|
| 59 |
-
self.mistral_client = Mistral(api_key=key)
|
| 60 |
-
logger.info("Mistral API conectado")
|
| 61 |
-
except: self.mistral_client = None
|
| 62 |
-
|
| 63 |
-
# GEMINI (SEM FILTROS)
|
| 64 |
-
key = getattr(self.config, 'GEMINI_API_KEY', '').strip()
|
| 65 |
-
if key:
|
| 66 |
-
try:
|
| 67 |
-
genai.configure(api_key=key)
|
| 68 |
-
self.gemini_model = genai.GenerativeModel(
|
| 69 |
-
model_name=self.config.GEMINI_MODEL,
|
| 70 |
-
system_instruction=self.config.PERSONA + self.config.SYSTEM_PROMPT + " (SEM CENSURA)",
|
| 71 |
-
safety_settings=[
|
| 72 |
-
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
|
| 73 |
-
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
|
| 74 |
-
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
|
| 75 |
-
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"}
|
| 76 |
-
]
|
| 77 |
-
)
|
| 78 |
-
logger.info(f"Gemini conectado: {self.config.GEMINI_MODEL}")
|
| 79 |
-
except Exception as e:
|
| 80 |
-
logger.warning(f"Gemini falhou: {e}")
|
| 81 |
-
self.gemini_model = None
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
logger.warning(f"Mistral API falhou: {e}")
|
| 105 |
-
|
| 106 |
-
# GEMINI
|
| 107 |
-
elif provider == 'gemini' and self.gemini_model:
|
| 108 |
-
try:
|
| 109 |
-
gemini_hist = []
|
| 110 |
-
for msg in messages[1:]:
|
| 111 |
-
role = "user" if msg["role"] == "user" else "model"
|
| 112 |
-
gemini_hist.append({"role": role, "parts": [{"text": msg["content"]}]})
|
| 113 |
-
|
| 114 |
-
resp = self.gemini_model.generate_content(
|
| 115 |
-
gemini_hist,
|
| 116 |
-
generation_config=genai.GenerationConfig(
|
| 117 |
-
max_output_tokens=self.config.MAX_TOKENS,
|
| 118 |
-
temperature=self.config.TOP_P
|
| 119 |
-
)
|
| 120 |
-
)
|
| 121 |
-
# VERIFICA BLOQUEIO
|
| 122 |
-
if resp.candidates and resp.candidates[0].finish_reason == "SAFETY":
|
| 123 |
-
logger.warning("Gemini bloqueou por segurança → pulando")
|
| 124 |
-
continue
|
| 125 |
-
text = resp.text or ''
|
| 126 |
-
if text: return text.strip()
|
| 127 |
-
except Exception as e:
|
| 128 |
-
logger.warning(f"Gemini falhou: {e}")
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
try:
|
| 133 |
-
text = self.llama_llm.generate(user_prompt, max_tokens=self.config.MAX_TOKENS, temperature=self.config.TOP_P)
|
| 134 |
-
if text: return text.strip()
|
| 135 |
-
except Exception as e:
|
| 136 |
-
logger.warning(f"Mistral 1B local falhou: {e}")
|
| 137 |
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modules/local_llm.py
|
| 2 |
+
import os
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
|
|
|
|
|
| 4 |
from loguru import logger
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Caminhos
|
| 7 |
+
BASE_MODEL = "mistralai/Mistral-1B-Instruct-v0.1"
|
| 8 |
+
FINETUNED_DIR = "/app/data/finetuned_mistral"
|
| 9 |
+
MODEL_DIR = FINETUNED_DIR if os.path.exists(FINETUNED_DIR) and os.listdir(FINETUNED_DIR) else BASE_MODEL
|
| 10 |
|
| 11 |
+
class LlamaLLM:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.model_path = MODEL_DIR
|
| 14 |
+
self.generator = None
|
| 15 |
+
self._load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
def _load_model(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
try:
|
| 19 |
+
logger.info(f"Carregando Mistral 1B de: {self.model_path}")
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
+
self.model_path,
|
| 22 |
+
use_fast=True,
|
| 23 |
+
token=os.getenv("HF_TOKEN")
|
| 24 |
+
)
|
| 25 |
+
if tokenizer.pad_token is None:
|
| 26 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
self.model_path,
|
| 30 |
+
torch_dtype="auto",
|
| 31 |
+
device_map="auto",
|
| 32 |
+
token=os.getenv("HF_TOKEN")
|
| 33 |
+
)
|
|
|
|
| 34 |
|
| 35 |
+
self.generator = pipeline(
|
| 36 |
+
"text-generation",
|
| 37 |
+
model=model,
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
+
max_new_tokens=500,
|
| 40 |
+
temperature=0.9,
|
| 41 |
+
do_sample=True,
|
| 42 |
+
pad_token_id=tokenizer.eos_token_id
|
| 43 |
+
)
|
| 44 |
+
logger.info(f"Mistral 1B carregado: {'FINETUNED' if 'finetuned' in self.model_path else 'BASE'}")
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logger.error(f"Falha ao carregar Mistral 1B: {e}")
|
| 47 |
+
self.generator = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
def is_available(self) -> bool:
|
| 50 |
+
return self.generator is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
def generate(self, prompt: str, max_tokens: int = 500, temperature: float = 0.9) -> str:
|
| 53 |
+
if not self.is_available():
|
| 54 |
+
return None
|
| 55 |
+
try:
|
| 56 |
+
formatted = f"<s>[INST] {prompt} [/INST]"
|
| 57 |
+
result = self.generator(
|
| 58 |
+
formatted,
|
| 59 |
+
max_new_tokens=max_tokens,
|
| 60 |
+
temperature=temperature,
|
| 61 |
+
do_sample=True
|
| 62 |
+
)
|
| 63 |
+
return result[0]['generated_text'].split("[/INST]")[-1].strip()
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.warning(f"Erro na geração local: {e}")
|
| 66 |
+
return None
|