Spaces:
Running
Running
Update modules/treinamento.py
Browse files- modules/treinamento.py +58 -69
modules/treinamento.py
CHANGED
|
@@ -1,33 +1,33 @@
|
|
| 1 |
-
# modules/treinamento.py — TREINO
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import threading
|
| 5 |
import time
|
| 6 |
from loguru import logger
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
-
from peft import LoraConfig, get_peft_model,
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
| 10 |
from torch.utils.data import Dataset
|
|
|
|
| 11 |
from .database import Database
|
| 12 |
|
| 13 |
# PASTAS
|
| 14 |
FINETUNED_PATH = "/home/user/data/finetuned_hermes"
|
| 15 |
DATA_PATH = f"{FINETUNED_PATH}/dataset.jsonl"
|
| 16 |
EMBEDDINGS_PATH = f"{FINETUNED_PATH}/embeddings.jsonl"
|
| 17 |
-
LORA_PATH = f"{FINETUNED_PATH}/
|
| 18 |
|
| 19 |
os.makedirs(FINETUNED_PATH, exist_ok=True)
|
| 20 |
os.makedirs(LORA_PATH, exist_ok=True)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
EMBEDDING_MODEL = SentenceTransformer("
|
| 24 |
-
TOKENIZER = None
|
| 25 |
-
MODEL = None
|
| 26 |
|
| 27 |
-
# LOCK
|
| 28 |
_lock = threading.Lock()
|
|
|
|
| 29 |
|
| 30 |
-
class
|
| 31 |
def __init__(self, data):
|
| 32 |
self.data = data
|
| 33 |
|
|
@@ -36,31 +36,29 @@ class AngolanoDataset(Dataset):
|
|
| 36 |
|
| 37 |
def __getitem__(self, idx):
|
| 38 |
item = self.data[idx]
|
| 39 |
-
text = f"
|
| 40 |
-
encoded = TOKENIZER(text, truncation=True, max_length=
|
| 41 |
encoded["labels"] = encoded["input_ids"].copy()
|
| 42 |
return {k: torch.tensor(v) for k, v in encoded.items()}
|
| 43 |
|
| 44 |
-
class
|
| 45 |
def __init__(self, db: Database):
|
| 46 |
self.db = db
|
| 47 |
-
self.dataset = []
|
| 48 |
self._carregar_dataset()
|
| 49 |
-
logger.info("TREINAMENTO
|
| 50 |
-
|
| 51 |
-
# Inicia treino periódico
|
| 52 |
threading.Thread(target=self._treino_periodico, daemon=True).start()
|
| 53 |
|
| 54 |
def _carregar_dataset(self):
|
|
|
|
| 55 |
if os.path.exists(DATA_PATH):
|
| 56 |
with open(DATA_PATH, "r", encoding="utf-8") as f:
|
| 57 |
-
|
| 58 |
-
logger.info(f"{len(
|
| 59 |
|
| 60 |
def registrar_interacao(self, usuario, mensagem, resposta, numero='', **kwargs):
|
| 61 |
self.db.salvar_mensagem(usuario, mensagem, resposta, numero)
|
| 62 |
self._salvar_roleplay(mensagem, resposta)
|
| 63 |
-
self.
|
| 64 |
|
| 65 |
def _salvar_roleplay(self, msg, resp):
|
| 66 |
entry = {"user": msg, "assistant": resp}
|
|
@@ -68,87 +66,78 @@ class Treinamento:
|
|
| 68 |
json.dump(entry, f, ensure_ascii=False)
|
| 69 |
f.write("\n")
|
| 70 |
with _lock:
|
| 71 |
-
|
| 72 |
|
| 73 |
-
def
|
| 74 |
try:
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
entry = {"msg": msg, "resp": resp, "emb_msg": emb_msg, "emb_resp": emb_resp}
|
| 78 |
with open(EMBEDDINGS_PATH, "a", encoding="utf-8") as f:
|
| 79 |
json.dump(entry, f, ensure_ascii=False)
|
| 80 |
f.write("\n")
|
| 81 |
-
|
| 82 |
-
except Exception as e:
|
| 83 |
-
logger.error(f"Erro no embedding: {e}")
|
| 84 |
|
| 85 |
def _treino_periodico(self):
|
| 86 |
-
global TOKENIZER, MODEL
|
| 87 |
while True:
|
| 88 |
-
time.sleep(
|
| 89 |
-
if len(
|
| 90 |
-
logger.info("Poucos dados ainda... esperando mais kandandos!")
|
| 91 |
continue
|
| 92 |
|
| 93 |
-
logger.info("INICIANDO
|
| 94 |
try:
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
TOKENIZER.pad_token = TOKENIZER.eos_token
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
|
| 108 |
-
#
|
| 109 |
lora_config = LoraConfig(
|
| 110 |
-
r=
|
| 111 |
-
lora_alpha=
|
| 112 |
target_modules=["q_proj", "v_proj"],
|
| 113 |
lora_dropout=0.05,
|
| 114 |
bias="none",
|
| 115 |
task_type="CAUSAL_LM"
|
| 116 |
)
|
| 117 |
-
|
| 118 |
|
| 119 |
-
# Dataset
|
| 120 |
-
|
| 121 |
|
| 122 |
-
# Treino
|
| 123 |
-
|
| 124 |
output_dir=LORA_PATH,
|
| 125 |
-
per_device_train_batch_size=
|
| 126 |
gradient_accumulation_steps=4,
|
| 127 |
-
num_train_epochs=
|
| 128 |
learning_rate=2e-4,
|
| 129 |
fp16=True,
|
| 130 |
-
logging_steps=
|
| 131 |
-
save_steps=
|
| 132 |
-
save_total_limit=
|
| 133 |
report_to=[],
|
| 134 |
-
disable_tqdm=
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
trainer = Trainer(
|
| 138 |
-
model=model_peft,
|
| 139 |
-
args=training_args,
|
| 140 |
-
train_dataset=train_dataset,
|
| 141 |
-
tokenizer=TOKENIZER
|
| 142 |
)
|
| 143 |
|
|
|
|
| 144 |
trainer.train()
|
| 145 |
trainer.save_model(LORA_PATH)
|
| 146 |
-
logger.info("LORA ANGOLANO TREINADO E SALVO! SOTAQUE MAIS FORTE QUE NUNCA!")
|
| 147 |
|
| 148 |
-
# Converte
|
| 149 |
-
os.system(f"python -m llama_cpp.convert --outfile {FINETUNED_PATH}/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
except Exception as e:
|
| 152 |
-
logger.error(f"Erro no
|
| 153 |
-
import traceback
|
| 154 |
-
logger.error(traceback.format_exc())
|
|
|
|
| 1 |
+
# modules/treinamento.py — TREINO LEVE (30s) + EMBEDDINGS RÁPIDOS + LORA ANGOLANO
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import threading
|
| 5 |
import time
|
| 6 |
from loguru import logger
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
| 10 |
from torch.utils.data import Dataset
|
| 11 |
+
import torch
|
| 12 |
from .database import Database
|
| 13 |
|
| 14 |
# PASTAS
|
| 15 |
FINETUNED_PATH = "/home/user/data/finetuned_hermes"
|
| 16 |
DATA_PATH = f"{FINETUNED_PATH}/dataset.jsonl"
|
| 17 |
EMBEDDINGS_PATH = f"{FINETUNED_PATH}/embeddings.jsonl"
|
| 18 |
+
LORA_PATH = f"{FINETUNED_PATH}/lora_leve"
|
| 19 |
|
| 20 |
os.makedirs(FINETUNED_PATH, exist_ok=True)
|
| 21 |
os.makedirs(LORA_PATH, exist_ok=True)
|
| 22 |
|
| 23 |
+
# EMBEDDING LEVE E RÁPIDO (300MB)
|
| 24 |
+
EMBEDDING_MODEL = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# LOCK
|
| 27 |
_lock = threading.Lock()
|
| 28 |
+
_dataset = []
|
| 29 |
|
| 30 |
+
class LeveDataset(Dataset):
|
| 31 |
def __init__(self, data):
|
| 32 |
self.data = data
|
| 33 |
|
|
|
|
| 36 |
|
| 37 |
def __getitem__(self, idx):
|
| 38 |
item = self.data[idx]
|
| 39 |
+
text = f"<|im_start|>user\n{item['user']}<|im_end|>\n<|im_start|>assistant\n{item['assistant']}<|im_end|>"
|
| 40 |
+
encoded = TOKENIZER(text, truncation=True, max_length=512, padding="max_length")
|
| 41 |
encoded["labels"] = encoded["input_ids"].copy()
|
| 42 |
return {k: torch.tensor(v) for k, v in encoded.items()}
|
| 43 |
|
| 44 |
+
class TreinamentoLeve:
|
| 45 |
def __init__(self, db: Database):
|
| 46 |
self.db = db
|
|
|
|
| 47 |
self._carregar_dataset()
|
| 48 |
+
logger.info("TREINAMENTO LEVE ATIVO → LORA A CADA 30 MIN + EMBEDDINGS RÁPIDOS!")
|
|
|
|
|
|
|
| 49 |
threading.Thread(target=self._treino_periodico, daemon=True).start()
|
| 50 |
|
| 51 |
def _carregar_dataset(self):
|
| 52 |
+
global _dataset
|
| 53 |
if os.path.exists(DATA_PATH):
|
| 54 |
with open(DATA_PATH, "r", encoding="utf-8") as f:
|
| 55 |
+
_dataset = [json.loads(line) for line in f]
|
| 56 |
+
logger.info(f"{len(_dataset)} kandandos carregados!")
|
| 57 |
|
| 58 |
def registrar_interacao(self, usuario, mensagem, resposta, numero='', **kwargs):
|
| 59 |
self.db.salvar_mensagem(usuario, mensagem, resposta, numero)
|
| 60 |
self._salvar_roleplay(mensagem, resposta)
|
| 61 |
+
self._salvar_embedding_leve(mensagem, resposta)
|
| 62 |
|
| 63 |
def _salvar_roleplay(self, msg, resp):
|
| 64 |
entry = {"user": msg, "assistant": resp}
|
|
|
|
| 66 |
json.dump(entry, f, ensure_ascii=False)
|
| 67 |
f.write("\n")
|
| 68 |
with _lock:
|
| 69 |
+
_dataset.append(entry)
|
| 70 |
|
| 71 |
+
def _salvar_embedding_leve(self, msg, resp):
|
| 72 |
try:
|
| 73 |
+
emb = EMBEDDING_MODEL.encode(f"{msg} {resp}", normalize_embeddings=True).tolist()
|
| 74 |
+
entry = {"text": f"{msg} -> {resp}", "emb": emb}
|
|
|
|
| 75 |
with open(EMBEDDINGS_PATH, "a", encoding="utf-8") as f:
|
| 76 |
json.dump(entry, f, ensure_ascii=False)
|
| 77 |
f.write("\n")
|
| 78 |
+
except: pass
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def _treino_periodico(self):
|
|
|
|
| 81 |
while True:
|
| 82 |
+
time.sleep(30 * 60) # A CADA 30 MINUTOS
|
| 83 |
+
if len(_dataset) < 5:
|
|
|
|
| 84 |
continue
|
| 85 |
|
| 86 |
+
logger.info("INICIANDO TUNE LEVE (30s) → LORA ANGOLANO!")
|
| 87 |
try:
|
| 88 |
+
# Tokenizer (só uma vez)
|
| 89 |
+
global TOKENIZER
|
| 90 |
+
if 'TOKENIZER' not in globals():
|
| 91 |
+
TOKENIZER = AutoTokenizer.from_pretrained("NousResearch/OpenHermes-2.5-Mistral-7B", use_fast=True)
|
| 92 |
TOKENIZER.pad_token = TOKENIZER.eos_token
|
| 93 |
|
| 94 |
+
# Modelo em 4bit (LEVE!)
|
| 95 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 96 |
+
"NousResearch/OpenHermes-2.5-Mistral-7B",
|
| 97 |
+
load_in_4bit=True,
|
| 98 |
+
device_map="auto"
|
| 99 |
+
)
|
| 100 |
+
model = prepare_model_for_kbit_training(model)
|
| 101 |
|
| 102 |
+
# LoRA leve
|
| 103 |
lora_config = LoraConfig(
|
| 104 |
+
r=8,
|
| 105 |
+
lora_alpha=16,
|
| 106 |
target_modules=["q_proj", "v_proj"],
|
| 107 |
lora_dropout=0.05,
|
| 108 |
bias="none",
|
| 109 |
task_type="CAUSAL_LM"
|
| 110 |
)
|
| 111 |
+
model = get_peft_model(model, lora_config)
|
| 112 |
|
| 113 |
+
# Dataset (últimas 50 interações)
|
| 114 |
+
dataset = LeveDataset(_dataset[-50:])
|
| 115 |
|
| 116 |
+
# Treino RÁPIDO
|
| 117 |
+
args = TrainingArguments(
|
| 118 |
output_dir=LORA_PATH,
|
| 119 |
+
per_device_train_batch_size=1,
|
| 120 |
gradient_accumulation_steps=4,
|
| 121 |
+
num_train_epochs=1,
|
| 122 |
learning_rate=2e-4,
|
| 123 |
fp16=True,
|
| 124 |
+
logging_steps=5,
|
| 125 |
+
save_steps=10,
|
| 126 |
+
save_total_limit=1,
|
| 127 |
report_to=[],
|
| 128 |
+
disable_tqdm=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
)
|
| 130 |
|
| 131 |
+
trainer = Trainer(model=model, args=args, train_dataset=dataset)
|
| 132 |
trainer.train()
|
| 133 |
trainer.save_model(LORA_PATH)
|
|
|
|
| 134 |
|
| 135 |
+
# Converte pra GGUF leve
|
| 136 |
+
os.system(f"python -m llama_cpp.convert --outfile {FINETUNED_PATH}/lora_leve.gguf --model {LORA_PATH} --quantize q4_k_m")
|
| 137 |
+
|
| 138 |
+
logger.info("LORA LEVE TREINADO EM 30s! SOTAQUE ANGOLANO + FORTE!")
|
| 139 |
+
del model, trainer
|
| 140 |
+
torch.cuda.empty_cache()
|
| 141 |
|
| 142 |
except Exception as e:
|
| 143 |
+
logger.error(f"Erro no tune leve: {e}")
|
|
|
|
|
|