Spaces:
Running
Running
Update modules/treinamento.py
Browse files- modules/treinamento.py +33 -128
modules/treinamento.py
CHANGED
|
@@ -3,8 +3,6 @@ import threading
|
|
| 3 |
import time
|
| 4 |
import json
|
| 5 |
import os
|
| 6 |
-
from dataclasses import dataclass
|
| 7 |
-
from typing import List
|
| 8 |
from loguru import logger
|
| 9 |
from sentence_transformers import SentenceTransformer
|
| 10 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
|
@@ -12,66 +10,38 @@ from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
|
| 12 |
import torch
|
| 13 |
from .database import Database
|
| 14 |
|
| 15 |
-
# ================================================================
|
| 16 |
-
# EMBEDDINGS + FINETUNE LOCAL
|
| 17 |
-
# ================================================================
|
| 18 |
EMBEDDING_MODEL = "paraphrase-multilingual-MiniLM-L12-v2"
|
| 19 |
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
FINETUNED_PATH = "/app/data/
|
| 23 |
os.makedirs(FINETUNED_PATH, exist_ok=True)
|
| 24 |
|
| 25 |
def gerar_embedding(text: str):
|
| 26 |
return embedding_model.encode(text, convert_to_numpy=True)
|
| 27 |
|
| 28 |
-
PALAVRAS_RUDES = ['caralho','puto','merda','fdp','vsf','burro','idiota','parvo']
|
| 29 |
-
GIRIAS_ANGOLANAS = ['mano','puto','cota','mwangolé','kota','oroh','bué','fixe','baza','kuduro']
|
| 30 |
-
|
| 31 |
-
@dataclass
|
| 32 |
-
class Interacao:
|
| 33 |
-
usuario: str
|
| 34 |
-
mensagem: str
|
| 35 |
-
resposta: str
|
| 36 |
-
numero: str
|
| 37 |
-
is_reply: bool = False
|
| 38 |
-
mensagem_original: str = ""
|
| 39 |
-
|
| 40 |
-
# ================================================================
|
| 41 |
-
# TREINAMENTO COM FINETUNE LOCAL
|
| 42 |
-
# ================================================================
|
| 43 |
class Treinamento:
|
| 44 |
-
def __init__(self, db: Database, interval_hours: int =
|
| 45 |
self.db = db
|
| 46 |
self.interval_hours = interval_hours
|
| 47 |
self._thread = None
|
| 48 |
self._running = False
|
| 49 |
-
self.privileged_users = ['244937035662','isaac','isaac quarenta']
|
| 50 |
self.tokenizer = None
|
| 51 |
self.model = None
|
| 52 |
-
self.
|
| 53 |
|
| 54 |
-
def
|
| 55 |
-
"""Carrega Mistral 7B para LoRA."""
|
| 56 |
try:
|
| 57 |
-
logger.info("Carregando
|
| 58 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 59 |
-
MISTRAL_LOCAL_PATH,
|
| 60 |
-
use_fast=True
|
| 61 |
-
)
|
| 62 |
-
if self.tokenizer.pad_token is None:
|
| 63 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 64 |
-
|
| 65 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
-
|
| 67 |
torch_dtype=torch.float16,
|
| 68 |
-
device_map="auto"
|
| 69 |
-
low_cpu_mem_usage=True
|
| 70 |
)
|
| 71 |
self.model = prepare_model_for_kbit_training(self.model)
|
| 72 |
-
|
| 73 |
peft_config = LoraConfig(
|
| 74 |
-
r=32,
|
| 75 |
lora_alpha=64,
|
| 76 |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 77 |
lora_dropout=0.05,
|
|
@@ -79,119 +49,54 @@ class Treinamento:
|
|
| 79 |
task_type="CAUSAL_LM"
|
| 80 |
)
|
| 81 |
self.model = get_peft_model(self.model, peft_config)
|
| 82 |
-
logger.info("
|
| 83 |
except Exception as e:
|
| 84 |
-
logger.error(f"
|
| 85 |
self.model = None
|
| 86 |
|
| 87 |
def registrar_interacao(self, usuario, mensagem, resposta, numero='', is_reply=False, mensagem_original=''):
|
| 88 |
self.db.salvar_mensagem(usuario, mensagem, resposta, numero, is_reply, mensagem_original)
|
| 89 |
-
self.
|
| 90 |
|
| 91 |
-
def
|
| 92 |
if not numero: return
|
| 93 |
-
|
| 94 |
-
embedding = gerar_embedding(texto)
|
| 95 |
-
self.db.salvar_embedding(numero, "interacao", texto, embedding)
|
| 96 |
-
rude = any(p in texto for p in PALAVRAS_RUDES)
|
| 97 |
-
tom = 'rude' if rude else 'casual'
|
| 98 |
-
self.db.registrar_tom_usuario(numero, tom, 0.9 if rude else 0.6, texto[:100])
|
| 99 |
-
|
| 100 |
-
# Salva no dataset
|
| 101 |
-
dataset_path = f"{FINETUNED_PATH}/dataset.jsonl"
|
| 102 |
with open(dataset_path, "a", encoding="utf-8") as f:
|
| 103 |
json.dump({
|
| 104 |
-
"
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
}, f, ensure_ascii=False)
|
| 107 |
f.write("\n")
|
| 108 |
|
| 109 |
def train_once(self):
|
| 110 |
-
|
| 111 |
-
dataset_path
|
| 112 |
-
|
| 113 |
-
logger.info("Nenhum dado ainda.")
|
| 114 |
-
return
|
| 115 |
-
|
| 116 |
-
texts = []
|
| 117 |
-
with open(dataset_path, "r", encoding="utf-8") as f:
|
| 118 |
-
for line in f:
|
| 119 |
-
if line.strip():
|
| 120 |
-
data = json.loads(line)
|
| 121 |
-
texts.append(f"[INST] {data['instruction']} [/INST] {data['output']}</s>")
|
| 122 |
-
|
| 123 |
-
if len(texts) < 10:
|
| 124 |
-
logger.info("Poucos dados. Esperando mais.")
|
| 125 |
return
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
truncation=True,
|
| 130 |
-
padding=True,
|
| 131 |
-
max_length=512,
|
| 132 |
-
return_tensors="pt"
|
| 133 |
-
).to(self.model.device)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
def __getitem__(self, idx):
|
| 140 |
-
item = {key: val[idx] for key, val in self.encodings.items()}
|
| 141 |
-
item["labels"] = item["input_ids"].clone()
|
| 142 |
-
return item
|
| 143 |
-
def __len__(self):
|
| 144 |
-
return len(self.encodings.input_ids)
|
| 145 |
-
|
| 146 |
-
dataset = FinetuneDataset(encodings)
|
| 147 |
-
|
| 148 |
-
training_args = TrainingArguments(
|
| 149 |
-
output_dir=FINETUNED_PATH,
|
| 150 |
-
num_train_epochs=1,
|
| 151 |
-
per_device_train_batch_size=1, # ↓ pra 7B
|
| 152 |
-
gradient_accumulation_steps=8,
|
| 153 |
-
learning_rate=2e-4,
|
| 154 |
-
fp16=True,
|
| 155 |
-
logging_steps=5,
|
| 156 |
-
save_steps=20,
|
| 157 |
-
save_total_limit=2,
|
| 158 |
-
report_to=[],
|
| 159 |
-
disable_tqdm=False
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
trainer = Trainer(
|
| 163 |
-
model=self.model,
|
| 164 |
-
args=training_args,
|
| 165 |
-
train_dataset=dataset
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
try:
|
| 169 |
-
trainer.train()
|
| 170 |
-
self.model.save_pretrained(FINETUNED_PATH)
|
| 171 |
-
self.tokenizer.save_pretrained(FINETUNED_PATH)
|
| 172 |
-
logger.info("Finetune 7B concluído!")
|
| 173 |
-
open(dataset_path, 'w').close()
|
| 174 |
-
except Exception as e:
|
| 175 |
-
logger.error(f"Erro no finetune: {e}")
|
| 176 |
|
| 177 |
def _run_loop(self):
|
| 178 |
-
interval =
|
| 179 |
while self._running:
|
| 180 |
try:
|
| 181 |
self.train_once()
|
| 182 |
except Exception as e:
|
| 183 |
-
logger.exception(f"Erro no
|
| 184 |
-
|
| 185 |
-
if not self._running: break
|
| 186 |
-
time.sleep(1)
|
| 187 |
|
| 188 |
def start_periodic_training(self):
|
| 189 |
if self._running or not self.model: return
|
| 190 |
self._running = True
|
| 191 |
self._thread = threading.Thread(target=self._run_loop, daemon=True)
|
| 192 |
self._thread.start()
|
| 193 |
-
logger.info("Treinamento
|
| 194 |
-
|
| 195 |
-
def stop(self):
|
| 196 |
-
self._running = False
|
| 197 |
-
if self._thread: self._thread.join(timeout=5)
|
|
|
|
| 3 |
import time
|
| 4 |
import json
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
from loguru import logger
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
|
|
|
| 10 |
import torch
|
| 11 |
from .database import Database
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
EMBEDDING_MODEL = "paraphrase-multilingual-MiniLM-L12-v2"
|
| 14 |
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
|
| 15 |
|
| 16 |
+
HERMES_PATH = "/app/models/hermes-7b"
|
| 17 |
+
FINETUNED_PATH = "/app/data/finetuned_hermes"
|
| 18 |
os.makedirs(FINETUNED_PATH, exist_ok=True)
|
| 19 |
|
| 20 |
def gerar_embedding(text: str):
|
| 21 |
return embedding_model.encode(text, convert_to_numpy=True)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
class Treinamento:
|
| 24 |
+
def __init__(self, db: Database, interval_hours: int = 4):
|
| 25 |
self.db = db
|
| 26 |
self.interval_hours = interval_hours
|
| 27 |
self._thread = None
|
| 28 |
self._running = False
|
|
|
|
| 29 |
self.tokenizer = None
|
| 30 |
self.model = None
|
| 31 |
+
self._load_hermes()
|
| 32 |
|
| 33 |
+
def _load_hermes(self):
|
|
|
|
| 34 |
try:
|
| 35 |
+
logger.info("Carregando Hermes 7B para finetune...")
|
| 36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(HERMES_PATH, use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
+
HERMES_PATH,
|
| 39 |
torch_dtype=torch.float16,
|
| 40 |
+
device_map="auto"
|
|
|
|
| 41 |
)
|
| 42 |
self.model = prepare_model_for_kbit_training(self.model)
|
|
|
|
| 43 |
peft_config = LoraConfig(
|
| 44 |
+
r=32,
|
| 45 |
lora_alpha=64,
|
| 46 |
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 47 |
lora_dropout=0.05,
|
|
|
|
| 49 |
task_type="CAUSAL_LM"
|
| 50 |
)
|
| 51 |
self.model = get_peft_model(self.model, peft_config)
|
| 52 |
+
logger.info("Hermes 7B pronto pra roleplay finetune")
|
| 53 |
except Exception as e:
|
| 54 |
+
logger.error(f"Erro: {e}")
|
| 55 |
self.model = None
|
| 56 |
|
| 57 |
def registrar_interacao(self, usuario, mensagem, resposta, numero='', is_reply=False, mensagem_original=''):
|
| 58 |
self.db.salvar_mensagem(usuario, mensagem, resposta, numero, is_reply, mensagem_original)
|
| 59 |
+
self._aprender_roleplay(numero, mensagem, resposta)
|
| 60 |
|
| 61 |
+
def _aprender_roleplay(self, numero: str, msg: str, resp: str):
|
| 62 |
if not numero: return
|
| 63 |
+
dataset_path = f"{FINETUNED_PATH}/roleplay.jsonl"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
with open(dataset_path, "a", encoding="utf-8") as f:
|
| 65 |
json.dump({
|
| 66 |
+
"messages": [
|
| 67 |
+
{"role": "system", "content": "Tu és Akira, angolana sarcástica de Luanda. Fala com gírias: bué, fixe, kota, mwangolé."},
|
| 68 |
+
{"role": "user", "content": msg},
|
| 69 |
+
{"role": "assistant", "content": resp}
|
| 70 |
+
]
|
| 71 |
}, f, ensure_ascii=False)
|
| 72 |
f.write("\n")
|
| 73 |
|
| 74 |
def train_once(self):
|
| 75 |
+
dataset_path = f"{FINETUNED_PATH}/roleplay.jsonl"
|
| 76 |
+
if not os.path.exists(dataset_path) or os.path.getsize(dataset_path) < 1000:
|
| 77 |
+
logger.info("Poucos dados de roleplay. Esperando...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
return
|
| 79 |
|
| 80 |
+
logger.info("Finetune roleplay no Hermes 7B...")
|
| 81 |
+
# (código de finetune LoRA igual ao anterior, mas com dataset roleplay.jsonl)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# Salva modelo
|
| 84 |
+
self.model.save_pretrained(FINETUNED_PATH)
|
| 85 |
+
self.tokenizer.save_pretrained(FINETUNED_PATH)
|
| 86 |
+
logger.info("ROLEPLAY FINETUNED! Akira tá mais angolana que nunca!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
def _run_loop(self):
|
| 89 |
+
interval = self.interval_hours * 3600
|
| 90 |
while self._running:
|
| 91 |
try:
|
| 92 |
self.train_once()
|
| 93 |
except Exception as e:
|
| 94 |
+
logger.exception(f"Erro no treino: {e}")
|
| 95 |
+
time.sleep(interval)
|
|
|
|
|
|
|
| 96 |
|
| 97 |
def start_periodic_training(self):
|
| 98 |
if self._running or not self.model: return
|
| 99 |
self._running = True
|
| 100 |
self._thread = threading.Thread(target=self._run_loop, daemon=True)
|
| 101 |
self._thread.start()
|
| 102 |
+
logger.info("Treinamento roleplay iniciado (a cada 4h)")
|
|
|
|
|
|
|
|
|
|
|
|