File size: 102,559 Bytes
1928410
e9b1b6e
 
f6af075
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
1f06354
1928410
 
 
4bc618b
1928410
 
 
4bc618b
1928410
4bc618b
1928410
 
 
 
 
 
e9b1b6e
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
4bc618b
1928410
 
 
e9b1b6e
1928410
 
 
 
 
4bc618b
1928410
4bc618b
1928410
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
4bc618b
5a7c030
1928410
 
5d9aa53
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
4bc618b
 
1928410
 
4bc618b
1928410
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
4bc618b
1928410
5d9aa53
1928410
4bc618b
1928410
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea6e5e7
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a8a14
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
f6af075
1928410
4bc618b
1928410
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
4bc618b
1928410
4bc618b
1928410
 
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
4bc618b
1928410
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1dcbba
1928410
 
c824df8
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45fa14d
1928410
 
4bc618b
1928410
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
4bc618b
1928410
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
4bc618b
1928410
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
45fa14d
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
45fa14d
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
4bc618b
1928410
 
4bc618b
1928410
 
 
 
aedac73
1928410
 
 
 
4bc618b
1928410
 
4bc618b
1928410
4bc618b
1928410
 
 
 
45fa14d
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
c824df8
1928410
 
4bc618b
1928410
 
 
 
 
d1dcbba
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
 
 
1928410
 
4bc618b
 
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
 
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
f6af075
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
04a8a14
4bc618b
1928410
4bc618b
1928410
 
4bc618b
1928410
 
 
 
4bc618b
1928410
 
 
 
 
5472f27
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
8464d11
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
61cede0
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6af075
1928410
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
4bc618b
1928410
 
f6af075
1928410
4bc618b
1928410
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
a9dab13
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
1928410
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9dab13
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc618b
a9dab13
1928410
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2887934
1928410
2887934
1928410
 
2887934
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2887934
1928410
 
 
2887934
1928410
 
 
4bc618b
1f06354
1928410
 
 
 
 
 
4bc618b
1928410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
import asyncio
import os
import json
import logging
import numpy as np
import pickle
import gzip
from typing import Dict, List, Optional, Any, Tuple
from datetime import datetime
import uuid
import httpx
import base64
from dataclasses import dataclass

# LightRAG imports
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status

# Database imports
import asyncpg
from redis import Redis

# Environment validation
REQUIRED_ENV_VARS = [
    'CLOUDFLARE_API_KEY',
    'CLOUDFLARE_ACCOUNT_ID',
    'DATABASE_URL',
    'BLOB_READ_WRITE_TOKEN',
    'REDIS_URL',
    'JWT_SECRET'
]


class EnvironmentError(Exception):
    """Raised when required environment variables are missing"""
    pass


def validate_environment():
    """Validate all required environment variables are present"""
    missing_vars = []
    for var in REQUIRED_ENV_VARS:
        if not os.getenv(var):
            missing_vars.append(var)

    if missing_vars:
        raise EnvironmentError(f"Missing required environment variables: {', '.join(missing_vars)}")


@dataclass
class RAGConfig:
    """Configuration for RAG instances"""
    ai_type: str
    user_id: Optional[str] = None
    ai_id: Optional[str] = None
    name: Optional[str] = None
    description: Optional[str] = None

    def get_cache_key(self) -> str:
        """Generate cache key for this RAG configuration"""
        return f"rag_{self.ai_type}_{self.user_id or 'system'}_{self.ai_id or 'default'}"


class CloudflareWorker:
    def __init__(self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str,
                 max_tokens: int = 4080):
        self.cloudflare_api_key = cloudflare_api_key
        self.api_base_url = api_base_url
        self.max_tokens = max_tokens
        self.logger = logging.getLogger(__name__)
        self.llm_model_name = llm_model_name
        self.embedding_model_name = embedding_model_name

        self.llm_models = [
            "@cf/meta/llama-3.1-8b-instruct",
            "@cf/deepseek-ai/deepseek-r1-distill-qwen-32b",
            "@cf/mistralai/mistral-small-3.1-24b-instruct",
            "@cf/meta/llama-4-scout-17b-16e-instruct",
            "@cf/meta/llama-3.2-11b-vision-instruct",
            "@cf/meta/llama-3-8b-instruct",  # βœ… VERY GOOD - Llama 3, 8B params
            "@cf/mistral/mistral-7b-instruct-v0.1",  # βœ… GOOD - Mistral, excellent reasoning
            "@cf/meta/llama-2-7b-chat-int8",  # βœ… RELIABLE - Stable Llama 2
            "@cf/microsoft/phi-2",  # βœ… FAST - Microsoft's small but powerful
            "@cf/meta/llama-3.2-3b-instruct",  # βœ… CURRENT - Your working model
            "@cf/google/gemma-3-12b-it",
            "@cf/google/gemma-7b-it",  # βœ… GOOD - Google's model
            "@cf/qwen/qwen1.5-7b-chat-awq",  # βœ… ALTERNATIVE - Chinese but works
            "@cf/tiiuae/falcon-7b-instruct",
            "@cf/microsoft/dialoGPT-medium",

        ]

        # VERIFIED WORKING embedding models
        self.embedding_models = [
            "@cf/baai/bge-large-en-v1.5",  # πŸ† BEST - Largest, most accurate
            "@cf/baai/bge-base-en-v1.5",  # βœ… GOOD - Standard choice
            "@cf/baai/bge-small-en-v1.5",  # βœ… FAST - Smaller but decent
            "@cf/baai/bge-m3",  # βœ… CURRENT - Multilingual
        ]
        self.current_llm_index = 0
        self.current_embedding_index = 0

    async def query(self, prompt: str, system_prompt: str = "", **kwargs) -> str:
        """Enhanced query with better entity extraction prompting"""

        # ENHANCED: Better system prompt for entity extraction
        if not system_prompt:
            system_prompt = """You are an expert technical document analyzer. Your main goal is to identify and extract important technical entities, concepts, and objects from specialized documents. Focus on:
- Technical terms and concepts
- Equipment and devices  
- Procedures and processes
- Standards and requirements
- Physical objects and systems
Be precise and technical in your analysis."""

        filtered_kwargs = {k: v for k, v in kwargs.items() if
                           k not in ['hashing_kv', 'history_messages', 'global_kv', 'text_chunks']}

        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": prompt[:self.max_tokens]},
        ]

        # ENHANCED: Better parameters for technical content
        input_data = {
            "messages": messages,
            "max_tokens": min(self.max_tokens, 4096),
            "temperature": 0.2,  # Lower temperature for more focused, technical responses
            "top_p": 0.85,  # Slightly focused sampling
            **filtered_kwargs
        }

        response, new_index = await self._send_request_with_fallback(self.llm_models, self.current_llm_index,
                                                                     input_data)
        self.current_llm_index = new_index

        # Log which model was used
        model_used = self.llm_models[new_index]
        self.logger.info(f"πŸ€– Used model: {model_used}")

        return response

    async def _send_request_with_fallback(self, model_list: List[str], current_index: int, input_: dict) -> Tuple[
        Any, int]:
        """Send request with model fallback"""
        for i in range(len(model_list)):
            model_index = (current_index + i) % len(model_list)
            model_name = model_list[model_index]

            try:
                headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
                async with httpx.AsyncClient(timeout=30.0) as client:
                    response = await client.post(
                        f"{self.api_base_url}{model_name}",
                        headers=headers,
                        json=input_
                    )
                    response.raise_for_status()
                    result = response.json().get("result", {})

                    if "data" in result:
                        return np.array(result["data"]), model_index
                    elif "response" in result:
                        return result["response"], model_index
                    else:
                        continue

            except Exception as e:
                self.logger.warning(f"Model {model_name} failed: {e}")
                continue

        raise Exception("All models failed")

    async def query(self, prompt: str, system_prompt: str = "", **kwargs) -> str:
        filtered_kwargs = {k: v for k, v in kwargs.items() if
                           k not in ['hashing_kv', 'history_messages', 'global_kv', 'text_chunks']}

        messages = [
            {"role": "system",
             "content": system_prompt or "You are a helpful AI assistant. Your main goal is to help with the knowledge you have from LightRAG files"},
            {"role": "user", "content": prompt[:self.max_tokens]},
        ]

        input_data = {"messages": messages, "max_tokens": min(self.max_tokens, 4096), **filtered_kwargs}

        response, new_index = await self._send_request_with_fallback(self.llm_models, self.current_llm_index,
                                                                     input_data)
        self.current_llm_index = new_index
        return response

    async def embedding_chunk(self, texts: List[str]) -> np.ndarray:
        truncated_texts = [text[:2000] for text in texts]
        input_data = {"text": truncated_texts}

        response, new_index = await self._send_request_with_fallback(self.embedding_models,
                                                                     self.current_embedding_index, input_data)
        self.current_embedding_index = new_index
        return response


class VercelBlobClient:
    """Vercel Blob storage client for RAG state persistence"""

    def __init__(self, token: str):
        self.token = token
        self.logger = logging.getLogger(__name__)

    async def put(self, filename: str, data: bytes) -> str:
        """Upload data to Vercel Blob"""
        try:
            async with httpx.AsyncClient(timeout=120.0) as client:
                response = await client.put(
                    f"https://blob.vercel-storage.com/{filename}",
                    headers={"Authorization": f"Bearer {self.token}"},
                    content=data
                )
                response.raise_for_status()
                result = response.json()
                return result.get('url', f"https://blob.vercel-storage.com/{filename}")
        except Exception as e:
            self.logger.error(f"Failed to upload to Vercel Blob: {e}")
            raise

    async def get(self, url: str) -> bytes:
        """Download data from Vercel Blob"""
        try:
            async with httpx.AsyncClient(timeout=120.0) as client:
                response = await client.get(url)
                response.raise_for_status()
                return response.content
        except Exception as e:
            self.logger.error(f"Failed to download from Vercel Blob: {e}")
            raise


class DatabaseManager:
    """Database manager with complete RAG persistence"""

    def __init__(self, database_url: str, redis_url: str):
        self.database_url = database_url
        self.redis_url = redis_url
        self.pool = None
        self.redis = None
        self.logger = logging.getLogger(__name__)

    async def connect(self):
        """Initialize database connections"""
        try:
            self.pool = await asyncpg.create_pool(
                self.database_url,
                min_size=2,
                max_size=20,
                command_timeout=60
            )

            self.redis = Redis.from_url(self.redis_url, decode_responses=True)

            self.logger.info("Database connections established successfully")

            await self._create_tables()

        except Exception as e:
            self.logger.error(f"Database connection failed: {e}")
            raise

    async def _create_tables(self):
        """Create necessary tables for RAG persistence"""
        async with self.pool.acquire() as conn:
            await conn.execute("""
                CREATE TABLE IF NOT EXISTS rag_instances (
                    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
                    ai_type VARCHAR(50) NOT NULL,
                    user_id VARCHAR(100),
                    ai_id VARCHAR(100),
                    name VARCHAR(255) NOT NULL,
                    description TEXT,
                    graph_blob_url TEXT,
                    vector_blob_url TEXT,
                    config_blob_url TEXT,
                    total_chunks INTEGER DEFAULT 0,
                    total_tokens INTEGER DEFAULT 0,
                    file_count INTEGER DEFAULT 0,
                    created_at TIMESTAMP DEFAULT NOW(),
                    updated_at TIMESTAMP DEFAULT NOW(),
                    last_accessed_at TIMESTAMP DEFAULT NOW(),
                    status VARCHAR(20) DEFAULT 'active',
                    UNIQUE(ai_type, user_id, ai_id)
                );

                CREATE TABLE IF NOT EXISTS knowledge_files (
                    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
                    rag_instance_id UUID REFERENCES rag_instances(id) ON DELETE CASCADE,
                    filename VARCHAR(255) NOT NULL,
                    original_filename VARCHAR(255),
                    file_type VARCHAR(50),
                    file_size INTEGER,
                    blob_url TEXT,
                    content_text TEXT,
                    processed_at TIMESTAMP DEFAULT NOW(),
                    processing_status VARCHAR(20) DEFAULT 'processed',
                    token_count INTEGER DEFAULT 0,
                    created_at TIMESTAMP DEFAULT NOW()
                );

                CREATE TABLE IF NOT EXISTS conversations (
                    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
                    user_id VARCHAR(100) NOT NULL,
                    ai_type VARCHAR(50) NOT NULL,
                    ai_id VARCHAR(100),
                    title VARCHAR(255),
                    created_at TIMESTAMP DEFAULT NOW(),
                    updated_at TIMESTAMP DEFAULT NOW(),
                    is_active BOOLEAN DEFAULT TRUE
                );

                CREATE TABLE IF NOT EXISTS conversation_messages (
                    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
                    conversation_id UUID REFERENCES conversations(id) ON DELETE CASCADE,
                    role VARCHAR(20) NOT NULL,
                    content TEXT NOT NULL,
                    metadata JSONB DEFAULT '{}',
                    created_at TIMESTAMP DEFAULT NOW()
                );

                CREATE TABLE IF NOT EXISTS system_stats (
                    id VARCHAR(50) PRIMARY KEY DEFAULT gen_random_uuid()::text,
                    total_users INTEGER NOT NULL DEFAULT 0,
                    total_ais INTEGER NOT NULL DEFAULT 0,
                    total_messages INTEGER NOT NULL DEFAULT 0,
                    date TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW()
                );

                CREATE INDEX IF NOT EXISTS idx_system_stats_date ON system_stats(date DESC);

                CREATE UNIQUE INDEX IF NOT EXISTS idx_system_stats_date_unique 
                ON system_stats(DATE(date));

                -- Insert initial stats if table is empty
                INSERT INTO system_stats (id, total_users, total_ais, total_messages, date)
                SELECT 'initial', 0, 0, 0, NOW()
                WHERE NOT EXISTS (SELECT 1 FROM system_stats);

                CREATE INDEX IF NOT EXISTS idx_rag_instances_lookup ON rag_instances(ai_type, user_id, ai_id);
                CREATE INDEX IF NOT EXISTS idx_conversations_user ON conversations(user_id);
                CREATE INDEX IF NOT EXISTS idx_conversation_messages_conv ON conversation_messages(conversation_id);
            """)

            self.logger.info("Database tables created/verified successfully")

    async def initialize_system_stats(self):
        """Initialize system stats with current counts from database"""
        try:
            async with self.pool.acquire() as conn:
                # Count actual users
                user_count = await conn.fetchval("""
                    SELECT COUNT(*) FROM users WHERE is_active = true
                """) or 0

                # Count actual custom AIs
                ai_count = await conn.fetchval("""
                    SELECT COUNT(*) FROM custom_ais WHERE is_active = true
                """) or 0

                # Count actual messages from both tables
                message_count = await conn.fetchval("""
                    SELECT 
                        (SELECT COUNT(*) FROM messages) + 
                        (SELECT COUNT(*) FROM conversation_messages)
                """) or 0

                # Check if today's stats already exist
                today = datetime.now().date()
                existing_stats = await conn.fetchrow("""
                    SELECT id FROM system_stats WHERE DATE(date) = $1
                """, today)

                if existing_stats:
                    # Update existing record
                    await conn.execute("""
                        UPDATE system_stats 
                        SET total_users = $1, total_ais = $2, total_messages = $3, date = NOW()
                        WHERE DATE(date) = $4
                    """, user_count, ai_count, message_count, today)
                else:
                    # Insert new record for today
                    await conn.execute("""
                        INSERT INTO system_stats (id, total_users, total_ais, total_messages, date)
                        VALUES ($1, $2, $3, $4, NOW())
                    """, f"stats_{today}", user_count, ai_count, message_count)

                self.logger.info(
                    f"πŸ“Š Initialized system stats: {user_count} users, {ai_count} AIs, {message_count} messages")

        except Exception as e:
            self.logger.error(f"Failed to initialize system stats: {e}")

    async def update_system_stat(self, stat_type: str, increment: int = 1):
        """Update a specific system statistic"""
        try:
            async with self.pool.acquire() as conn:
                today = datetime.now().date()

                # Map stat types to column names
                column_map = {
                    'users': 'total_users',
                    'ais': 'total_ais',
                    'messages': 'total_messages'
                }

                if stat_type not in column_map:
                    self.logger.warning(f"Unknown stat type: {stat_type}")
                    return

                column_name = column_map[stat_type]

                # Upsert today's record
                await conn.execute(f"""
                    INSERT INTO system_stats (id, total_users, total_ais, total_messages, date)
                    VALUES ($1, 
                        CASE WHEN '{column_name}' = 'total_users' THEN $2 ELSE 0 END,
                        CASE WHEN '{column_name}' = 'total_ais' THEN $2 ELSE 0 END,
                        CASE WHEN '{column_name}' = 'total_messages' THEN $2 ELSE 0 END,
                        NOW())
                    ON CONFLICT (DATE(date)) DO UPDATE SET
                        {column_name} = system_stats.{column_name} + $2,
                        date = NOW()
                """, f"stats_{today}", increment)

                self.logger.debug(f"πŸ“ˆ Updated {stat_type} by {increment}")

        except Exception as e:
            self.logger.error(f"Failed to update {stat_type} stat: {e}")

    async def get_current_stats(self):
        """Get current system statistics"""
        try:
            async with self.pool.acquire() as conn:
                # Get latest stats
                stats_row = await conn.fetchrow("""
                    SELECT total_users, total_ais, total_messages, date
                    FROM system_stats 
                    ORDER BY date DESC 
                    LIMIT 1
                """)

                if not stats_row:
                    # Initialize if no stats exist
                    await self.initialize_system_stats()
                    return await self.get_current_stats()

                # Calculate total characters (lines of code)
                total_characters = await conn.fetchval("""
                    SELECT COALESCE(
                        (SELECT SUM(LENGTH(content)) FROM messages) + 
                        (SELECT SUM(LENGTH(content)) FROM conversation_messages),
                        0
                    )
                """)

                return {
                    'total_users': stats_row['total_users'],
                    'total_ais': stats_row['total_ais'],
                    'total_messages': stats_row['total_messages'],
                    'lines_of_code_generated': total_characters or 0,
                    'last_updated': stats_row['date'].isoformat()
                }

        except Exception as e:
            self.logger.error(f"Failed to get current stats: {e}")
            # Return default stats on error
            return {
                'total_users': 0,
                'total_ais': 0,
                'total_messages': 0,
                'lines_of_code_generated': 0,
                'last_updated': datetime.now().isoformat()
            }

    async def save_rag_instance(self, config: RAGConfig, graph_blob_url: str, vector_blob_url: str,
                                config_blob_url: str, metadata: Dict[str, Any]) -> str:
        async with self.pool.acquire() as conn:
            rag_instance_id = await conn.fetchval("""
                INSERT INTO rag_instances (
                    ai_type, user_id, ai_id, name, description,
                    graph_blob_url, vector_blob_url, config_blob_url,
                    total_chunks, total_tokens, file_count,
                    created_at, updated_at, last_accessed_at
                ) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, NOW(), NOW(), NOW())
                ON CONFLICT (ai_type, user_id, ai_id) DO UPDATE SET
                    graph_blob_url = EXCLUDED.graph_blob_url,
                    vector_blob_url = EXCLUDED.vector_blob_url,
                    config_blob_url = EXCLUDED.config_blob_url,
                    total_chunks = EXCLUDED.total_chunks,
                    total_tokens = EXCLUDED.total_tokens,
                    file_count = EXCLUDED.file_count,
                    updated_at = NOW()
                RETURNING id;
            """,
                                                  config.ai_type, config.user_id, config.ai_id,
                                                  config.name, config.description,
                                                  graph_blob_url, vector_blob_url, config_blob_url,
                                                  metadata.get('total_chunks', 0),
                                                  metadata.get('total_tokens', 0),
                                                  metadata.get('file_count', 0)
                                                  )

            return str(rag_instance_id)

    async def cleanup_duplicate_rag_instances(self, ai_type: str, keep_latest: bool = True):
        """Clean up duplicate RAG instances, keeping only the latest one"""
        async with self.pool.acquire() as conn:
            if keep_latest:
                # Keep the latest instance, deactivate others
                await conn.execute("""
                    UPDATE rag_instances 
                    SET status = 'duplicate_cleanup'
                    WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL 
                    AND status = 'active'
                    AND id NOT IN (
                        SELECT id FROM rag_instances 
                        WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL AND status = 'active'
                        ORDER BY created_at DESC LIMIT 1
                    )
                """, ai_type)

                count = await conn.fetchval("""
                    SELECT COUNT(*) FROM rag_instances 
                    WHERE ai_type = $1 AND status = 'duplicate_cleanup'
                """, ai_type)

                self.logger.info(f"🧹 Cleaned up {count} duplicate {ai_type} RAG instances")

            # Return the active instance info
            active_instance = await conn.fetchrow("""
                SELECT id, name, created_at FROM rag_instances
                WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL AND status = 'active'
                ORDER BY created_at DESC LIMIT 1
            """, ai_type)

            if active_instance:
                self.logger.info(f"βœ… Active {ai_type} RAG: {active_instance['name']} (ID: {active_instance['id']})")

            return active_instance

    async def get_rag_instance(self, config: RAGConfig) -> Optional[Dict[str, Any]]:
        """Get RAG instance from database with FIXED cache key matching"""
        async with self.pool.acquire() as conn:
            # Handle NULL/None matching properly for PostgreSQL
            if config.user_id is None and config.ai_id is None:
                # System-level RAG (fire-safety, general, etc.)
                result = await conn.fetchrow("""
                    SELECT id, ai_type, user_id, ai_id, name, description,
                           graph_blob_url, vector_blob_url, config_blob_url,
                           total_chunks, total_tokens, file_count,
                           created_at, updated_at, last_accessed_at, status
                    FROM rag_instances
                    WHERE ai_type = $1 AND user_id IS NULL AND ai_id IS NULL AND status = 'active'
                    ORDER BY created_at DESC
                    LIMIT 1
                """, config.ai_type)
            elif config.user_id is not None and config.ai_id is None:
                # User-specific RAG (user's general AI)
                result = await conn.fetchrow("""
                    SELECT id, ai_type, user_id, ai_id, name, description,
                           graph_blob_url, vector_blob_url, config_blob_url,
                           total_chunks, total_tokens, file_count,
                           created_at, updated_at, last_accessed_at, status
                    FROM rag_instances
                    WHERE ai_type = $1 AND user_id = $2 AND ai_id IS NULL AND status = 'active'
                    ORDER BY created_at DESC
                    LIMIT 1
                """, config.ai_type, config.user_id)
            else:
                # Custom AI RAG
                result = await conn.fetchrow("""
                    SELECT id, ai_type, user_id, ai_id, name, description,
                           graph_blob_url, vector_blob_url, config_blob_url,
                           total_chunks, total_tokens, file_count,
                           created_at, updated_at, last_accessed_at, status
                    FROM rag_instances
                    WHERE ai_type = $1 AND user_id = $2 AND ai_id = $3 AND status = 'active'
                    ORDER BY created_at DESC
                    LIMIT 1
                """, config.ai_type, config.user_id, config.ai_id)

            if result:
                # Update last accessed time
                await conn.execute("""
                    UPDATE rag_instances SET last_accessed_at = NOW() WHERE id = $1
                """, result['id'])

                self.logger.info(f"🎯 Database lookup SUCCESS: Found {result['name']} (ID: {result['id']})")
                return dict(result)

            self.logger.info(
                f"πŸ” Database lookup: No RAG found for ai_type='{config.ai_type}', user_id={config.user_id}, ai_id={config.ai_id}")
            return None

    async def save_conversation_message(
            self,
            conversation_id: str,
            role: str,
            content: str,
            metadata: Optional[Dict[str, Any]] = None
    ) -> str:
        """Save conversation message to database"""
        async with self.pool.acquire() as conn:
            await conn.execute("""
                INSERT INTO conversations (id, user_id, ai_type, ai_id, title)
                VALUES ($1, $2, $3, $4, $5)
                ON CONFLICT (id) DO NOTHING
            """, conversation_id,
                               metadata.get('user_id', 'anonymous'),
                               metadata.get('ai_type', 'unknown'),
                               metadata.get('ai_id'),
                               metadata.get('title', 'New Conversation')
                               )

            message_id = await conn.fetchval("""
                INSERT INTO conversation_messages (conversation_id, role, content, metadata)
                VALUES ($1, $2, $3, $4)
                RETURNING id
            """, conversation_id, role, content, json.dumps(metadata or {}))

            return str(message_id)

    async def get_conversation_messages(
            self,
            conversation_id: str,
            limit: int = 50
    ) -> List[Dict[str, Any]]:
        """Get conversation messages from database"""
        async with self.pool.acquire() as conn:
            messages = await conn.fetch("""
                SELECT id, role, content, metadata, created_at
                FROM conversation_messages
                WHERE conversation_id = $1
                ORDER BY created_at DESC
                LIMIT $2
            """, conversation_id, limit)

            return [dict(msg) for msg in reversed(messages)]

    async def close(self):
        """Close database connections"""
        if self.pool:
            await self.pool.close()
        if self.redis:
            self.redis.close()


class PersistentLightRAGManager:
    """
    Complete LightRAG manager with Vercel-only persistence
    Zero dependency on HuggingFace ephemeral storage
    """

    def __init__(
            self,
            cloudflare_worker: CloudflareWorker,
            database_manager: DatabaseManager,
            blob_client: VercelBlobClient
    ):
        self.cloudflare_worker = cloudflare_worker
        self.db = database_manager
        self.blob_client = blob_client
        self.rag_instances: Dict[str, LightRAG] = {}
        self.processing_locks: Dict[str, asyncio.Lock] = {}
        self.conversation_memory: Dict[str, List[Dict[str, Any]]] = {}
        self.logger = logging.getLogger(__name__)

    async def get_or_create_rag_instance(self, ai_type: str, user_id: Optional[str] = None, ai_id: Optional[str] = None,
                                         name: Optional[str] = None, description: Optional[str] = None) -> LightRAG:
        config = RAGConfig(ai_type=ai_type, user_id=user_id, ai_id=ai_id, name=name or f"{ai_type} AI",
                           description=description)
        cache_key = config.get_cache_key()

        if cache_key in self.rag_instances:
            self.logger.info(f"Returning cached RAG instance: {cache_key}")
            return self.rag_instances[cache_key]

        if cache_key not in self.processing_locks:
            self.processing_locks[cache_key] = asyncio.Lock()

        async with self.processing_locks[cache_key]:
            if cache_key in self.rag_instances:
                return self.rag_instances[cache_key]

            try:
                self.logger.info(f"Checking for existing RAG instance: {cache_key}")
                instance_data = await self.db.get_rag_instance(config)

                if instance_data:
                    self.logger.info(
                        f"Found existing RAG instance: {instance_data['name']} (ID: {instance_data['id']})")

                    async with self.db.pool.acquire() as conn:
                        storage_check = await conn.fetchrow("""
                            SELECT filename, file_size, processing_status, token_count
                            FROM knowledge_files 
                            WHERE rag_instance_id = $1 AND filename = 'lightrag_storage.json'
                            LIMIT 1
                        """, instance_data['id'])

                    if storage_check:
                        self.logger.info(
                            f"Found storage data: {storage_check['file_size']} bytes, {storage_check['token_count']} tokens, status: {storage_check['processing_status']}")

                        rag_instance = await self._load_from_database(config)
                        if rag_instance:
                            self.rag_instances[cache_key] = rag_instance
                            self.logger.info(f"Successfully loaded existing RAG from database: {cache_key}")
                            return rag_instance
                        else:
                            self.logger.error(f"Failed to load RAG from database despite having storage data")
                    else:
                        self.logger.warning(f"RAG instance exists but no storage data found")
                else:
                    self.logger.info(f"No existing RAG instance found in database for: {cache_key}")

            except Exception as e:
                self.logger.error(f"Error checking/loading existing RAG instance: {e}")

            self.logger.info(f"Creating new RAG instance: {cache_key}")
            rag_instance = await self._create_new_rag_instance(config)
            await self._save_to_database(config, rag_instance)
            self.rag_instances[cache_key] = rag_instance
            return rag_instance

    async def _create_new_rag_instance(self, config: RAGConfig) -> LightRAG:
        """Create new RAG instance with CORRECT LightRAG 1.3.7 configuration"""

        working_dir = f"/tmp/rag_memory_{config.get_cache_key()}_{uuid.uuid4()}"
        os.makedirs(working_dir, exist_ok=True)

        # FIXED: Use only valid LightRAG 1.3.7 parameters
        rag = LightRAG(
            working_dir=working_dir,
            max_parallel_insert=1,  # Reduce for stability
            llm_model_func=self.cloudflare_worker.query,
            llm_model_name=self.cloudflare_worker.llm_models[0],
            llm_model_max_token_size=4080,
            embedding_func=EmbeddingFunc(
                embedding_dim=1024,
                max_token_size=2048,
                func=self.cloudflare_worker.embedding_chunk,
            ),
            graph_storage="NetworkXStorage",
            vector_storage="NanoVectorDBStorage",
            # REMOVED invalid parameters:
            # enable_entity_extraction=True,  # NOT VALID IN 1.3.7
            # chunk_token_size=1200,          # NOT VALID IN 1.3.7
            # entity_extract_max_gleaning=1,  # NOT VALID IN 1.3.7
            # entity_summarization_enabled=True, # NOT VALID IN 1.3.7
        )

        # Initialize storages
        await rag.initialize_storages()
        await initialize_pipeline_status()

        self.logger.info(f"βœ… Initialized LightRAG 1.3.7 with working directory: {working_dir}")

        # Verify configuration
        self.logger.info(f"πŸ”§ LightRAG Configuration:")
        self.logger.info(f"   - Working dir: {rag.working_dir}")
        self.logger.info(f"   - LLM model: {rag.llm_model_name}")
        self.logger.info(f"   - Graph storage: {type(rag.graph_storage).__name__}")
        self.logger.info(f"   - Vector storage: {type(rag.vector_storage).__name__}")

        # Initialize pipeline status properly
        if not hasattr(rag, 'pipeline_status') or rag.pipeline_status is None:
            rag.pipeline_status = {"history_messages": []}
        elif "history_messages" not in rag.pipeline_status:
            rag.pipeline_status["history_messages"] = []

        self.logger.info(f"βœ… Pipeline status initialized for {config.get_cache_key()}")

        # Load knowledge based on AI type
        if config.ai_type == "fire-safety":
            self.logger.info(f"πŸ”₯ Loading fire safety knowledge for {config.get_cache_key()}")
            success = await self._load_fire_safety_knowledge(rag)

            if success:
                # CRITICAL: Wait for entity extraction to complete
                self.logger.info("⏳ Waiting for entity extraction to complete...")
                await asyncio.sleep(10)  # Give LightRAG time to process entities

                # Check what was actually created
                await self._check_storage_contents(rag)
            else:
                self.logger.warning("⚠️ Fire safety knowledge loading reported failure")

        return rag

    async def _check_storage_contents(self, rag: LightRAG):
        """Check what was actually stored after document insertion"""

        try:
            self.logger.info("πŸ” Checking storage contents after insertion...")

            # Check all storage files
            storage_files = {
                'vdb_entities.json': 'entities',
                'vdb_chunks.json': 'chunks',
                'vdb_relationships.json': 'relationships'
            }

            total_items = 0

            for filename, storage_type in storage_files.items():
                file_path = f"{rag.working_dir}/{filename}"

                if os.path.exists(file_path):
                    try:
                        file_size = os.path.getsize(file_path)

                        with open(file_path, 'r') as f:
                            data = json.load(f)

                        item_count = len(data.get('data', []))
                        has_matrix = bool(data.get('matrix', ''))

                        total_items += item_count

                        if item_count > 0:
                            self.logger.info(
                                f"βœ… {storage_type}: {item_count} items, {file_size} bytes, matrix: {has_matrix}")

                            # Show sample for debugging
                            if item_count > 0 and len(data['data']) > 0:
                                sample_item = data['data'][0]
                                if isinstance(sample_item, dict):
                                    sample_keys = list(sample_item.keys())[:5]  # Show first 5 keys
                                    self.logger.info(f"   Sample item keys: {sample_keys}")
                                else:
                                    self.logger.info(f"   Sample item type: {type(sample_item)}")
                        else:
                            self.logger.warning(f"⚠️ {storage_type}: EMPTY ({file_size} bytes)")

                    except Exception as e:
                        self.logger.error(f"❌ Failed to read {filename}: {e}")
                else:
                    self.logger.warning(f"⚠️ {filename} doesn't exist")

            self.logger.info(f"πŸ“Š Total items across all storage: {total_items}")

            # Test if entity extraction is working by checking entities specifically
            if total_items > 0:
                await self._test_entity_extraction_quality(rag)

        except Exception as e:
            self.logger.error(f"❌ Storage content check failed: {e}")

    async def _test_entity_extraction_quality(self, rag: LightRAG):
        """Test the quality of entity extraction"""

        try:
            self.logger.info("πŸ§ͺ Testing entity extraction quality...")

            # Check entities file specifically
            entities_file = f"{rag.working_dir}/vdb_entities.json"

            if os.path.exists(entities_file):
                with open(entities_file, 'r') as f:
                    entities_data = json.load(f)

                entities_count = len(entities_data.get('data', []))

                if entities_count > 0:
                    self.logger.info(f"βœ… Found {entities_count} entities")

                    # Show some sample entities
                    for i, entity in enumerate(entities_data['data'][:3]):  # Show first 3
                        if isinstance(entity, dict):
                            entity_name = entity.get('content', entity.get('name', str(entity)))
                            self.logger.info(f"   Entity {i + 1}: {entity_name}")

                    return True
                else:
                    self.logger.warning("⚠️ No entities found - this will break HYBRID mode")
                    return False
            else:
                self.logger.warning("⚠️ Entities file doesn't exist")
                return False

        except Exception as e:
            self.logger.error(f"❌ Entity extraction test failed: {e}")
            return False

    async def debug_entity_extraction(self, rag: LightRAG):
        """Debug why entities aren't being extracted"""

        try:
            self.logger.info("πŸ” Debugging entity extraction process...")

            # Check if entity extraction is working at all
            test_content = """
            Fire safety regulations require that all commercial buildings have fire extinguishers. 
            Emergency exits must be clearly marked with illuminated signs. 
            Sprinkler systems are mandatory in buildings over 15,000 square feet.
            """

            # Try manual entity extraction
            try:
                # This should trigger entity extraction
                await rag.ainsert(test_content)

                # Wait for processing
                await asyncio.sleep(3)

                # Check what was created
                entities_file = f"{rag.working_dir}/vdb_entities.json"
                relationships_file = f"{rag.working_dir}/vdb_relationships.json"

                for file_path in [entities_file, relationships_file]:
                    if os.path.exists(file_path):
                        with open(file_path, 'r') as f:
                            data = json.load(f)
                            filename = os.path.basename(file_path)
                            item_count = len(data.get('data', []))

                            self.logger.info(f"πŸ“Š {filename}: {item_count} items")

                            if item_count > 0:
                                # Show sample data
                                sample = data['data'][0]
                                self.logger.info(f"πŸ“ Sample {filename} item: {sample}")
                            else:
                                self.logger.warning(f"⚠️ {filename} is still empty after insertion")
                    else:
                        self.logger.warning(f"⚠️ {file_path} doesn't exist")

            except Exception as e:
                self.logger.error(f"❌ Entity extraction test failed: {e}")

            # Check LightRAG configuration
            self.logger.info(f"πŸ”§ LightRAG config:")
            self.logger.info(f"   - Working dir: {rag.working_dir}")
            self.logger.info(f"   - LLM model: {getattr(rag, 'llm_model_name', 'unknown')}")
            self.logger.info(f"   - Graph storage: {type(rag.graph_storage).__name__}")
            self.logger.info(f"   - Vector storage: {type(rag.vector_storage).__name__}")

            # Check if extraction is enabled
            if hasattr(rag, 'enable_entity_extraction'):
                self.logger.info(f"   - Entity extraction enabled: {rag.enable_entity_extraction}")

            return True

        except Exception as e:
            self.logger.error(f"❌ Debug entity extraction failed: {e}")
            return False

    async def validate_extracted_entities(self, rag: LightRAG, original_content: str) -> bool:
        """Validate that extracted entities actually exist in the source content"""

        try:
            entities_file = f"{rag.working_dir}/vdb_entities.json"
            if not os.path.exists(entities_file):
                return True  # No entities to validate

            with open(entities_file, 'r') as f:
                entities_data = json.load(f)

            entities = entities_data.get('data', [])
            invalid_entities = []
            valid_entities = []

            self.logger.info(f"πŸ” Validating {len(entities)} extracted entities against source content...")

            for entity in entities:
                if isinstance(entity, dict):
                    entity_name = entity.get('entity_name', '').strip()

                    # Skip empty or placeholder entities
                    if not entity_name or entity_name in ['<entity_name>', '', 'Unknown']:
                        invalid_entities.append(f"Empty/placeholder: '{entity_name}'")
                        continue

                    # Check if entity name appears in the original content
                    if entity_name.lower() in original_content.lower():
                        valid_entities.append(entity_name)
                        self.logger.info(f"   βœ… Valid entity: '{entity_name}'")
                    else:
                        invalid_entities.append(f"Not found in content: '{entity_name}'")
                        self.logger.warning(f"   ❌ INVALID entity: '{entity_name}' - NOT FOUND in source content!")

            self.logger.info(f"πŸ“Š Entity validation results:")
            self.logger.info(f"   βœ… Valid entities: {len(valid_entities)}")
            self.logger.info(f"   ❌ Invalid entities: {len(invalid_entities)}")

            if invalid_entities:
                self.logger.error(f"🚨 ENTITY HALLUCINATION DETECTED!")
                for invalid in invalid_entities[:5]:  # Show first 5
                    self.logger.error(f"      {invalid}")

                if len(invalid_entities) > 5:
                    self.logger.error(f"      ... and {len(invalid_entities) - 5} more invalid entities")

                return False

            return True

        except Exception as e:
            self.logger.error(f"❌ Entity validation failed: {e}")
            return False

    async def clean_hallucinated_entities(self, rag: LightRAG, original_content: str):
        """Remove entities that don't exist in the source content"""

        try:
            entities_file = f"{rag.working_dir}/vdb_entities.json"
            if not os.path.exists(entities_file):
                return

            with open(entities_file, 'r') as f:
                entities_data = json.load(f)

            original_entities = entities_data.get('data', [])
            cleaned_entities = []
            removed_count = 0

            self.logger.info(f"🧹 Cleaning hallucinated entities from {len(original_entities)} total entities...")

            for entity in original_entities:
                if isinstance(entity, dict):
                    entity_name = entity.get('entity_name', '').strip()

                    # Remove empty/placeholder entities
                    if not entity_name or entity_name in ['<entity_name>', '', 'Unknown']:
                        removed_count += 1
                        continue

                    # Remove entities not found in content
                    if entity_name.lower() not in original_content.lower():
                        self.logger.warning(f"   πŸ—‘οΈ Removing hallucinated entity: '{entity_name}'")
                        removed_count += 1
                        continue

                    # Keep valid entities
                    cleaned_entities.append(entity)

            # Update the entities file with cleaned data
            entities_data['data'] = cleaned_entities

            with open(entities_file, 'w') as f:
                json.dump(entities_data, f)

            self.logger.info(f"βœ… Entity cleaning complete:")
            self.logger.info(f"   πŸ“Š Original entities: {len(original_entities)}")
            self.logger.info(f"   πŸ—‘οΈ Removed: {removed_count}")
            self.logger.info(f"   βœ… Remaining: {len(cleaned_entities)}")

        except Exception as e:
            self.logger.error(f"❌ Entity cleaning failed: {e}")

    async def _load_fire_safety_knowledge(self, rag: LightRAG):
        """Load fire safety knowledge with FIXED insertion process"""

        self.logger.info(f"πŸ”₯ Loading fire safety knowledge for {rag.working_dir}")

        # Prepare knowledge content
        base_knowledge = """
        FIRE SAFETY REGULATIONS AND BUILDING CODES

        1. Emergency Exit Requirements:
        - All buildings must have at least two exits on each floor
        - Maximum travel distance to exit: 75 feet in unsprinklered buildings, 100 feet in sprinklered buildings
        - Exit doors must swing in direction of egress travel
        - All exits must be clearly marked with illuminated exit signs
        - Exit routes must be free of obstructions at all times
        - Minimum width for exits: 32 inches for single doors, 64 inches for double doors

        2. Fire Extinguisher Requirements:
        - Type A: For ordinary combustible materials (wood, paper, cloth, rubber, plastic)
        - Type B: For flammable and combustible liquids (gasoline, oil, paint, grease)
        - Type C: For energized electrical equipment (motors, generators, switches)
        - Type D: For combustible metals (magnesium, titanium, zirconium, lithium)
        - Type K: For cooking oils and fats in commercial kitchen equipment
        - Distribution: Maximum travel distance of 75 feet to nearest extinguisher
        - Inspection: Monthly visual inspections and annual professional service

        3. Fire Detection and Alarm Systems:
        - Smoke detectors required in all sleeping areas and hallways
        - Heat detectors required in areas where smoke detectors unsuitable
        - Manual fire alarm pull stations required near all exits
        - Central monitoring systems required in commercial buildings over 10,000 sq ft
        - Backup power systems required for all alarm components
        - Testing schedule: Monthly for batteries, annually for full system

        4. Sprinkler System Requirements:
        - Required in all buildings over 3 stories or 15,000 sq ft
        - Wet pipe systems: Most common, water-filled pipes
        - Dry pipe systems: For areas subject to freezing temperatures
        - Deluge systems: For high-hazard areas with rapid fire spread potential
        - Inspection: Quarterly for valves, annually for full system testing
        """

        all_content = [base_knowledge]
        # Load additional files if they exist
        book_files = ['/app/book.pdf', '/app/book.txt']

        for file_path in book_files:
            if os.path.exists(file_path):
                try:
                    if file_path.endswith('.pdf'):
                        try:
                            import PyPDF2
                            with open(file_path, 'rb') as file:
                                pdf_reader = PyPDF2.PdfReader(file)
                                for page_num in range(min(20, len(pdf_reader.pages))):  # Reduced from 50 to 20
                                    page_text = pdf_reader.pages[page_num].extract_text()
                                    if page_text and len(page_text.strip()) > 100:
                                        all_content.append(
                                            f"PDF Page {page_num + 1}: {page_text[:3000]}")  # Reduced chunk size
                        except Exception as e:
                            self.logger.warning(f"PDF processing failed: {e}")
                            continue
                    else:
                        with open(file_path, 'r', encoding='utf-8', errors='ignore') as file:
                            txt_content = file.read()
                            # Split into smaller chunks
                            for i in range(0, min(len(txt_content), 60000), 3000):  # Reduced chunk size and total
                                chunk = txt_content[i:i + 3000]
                                if chunk.strip():
                                    all_content.append(f"TXT Section {i // 3000 + 1}: {chunk}")

                    self.logger.info(f"βœ… Loaded {file_path}")
                except Exception as e:
                    self.logger.error(f"❌ Failed to load {file_path}: {e}")

        self.logger.info(f"πŸ“š Starting insertion of {len(all_content)} documents")

        # CRITICAL: Insert documents with better error handling and timeout
        successful_insertions = 0

        for i, content in enumerate(all_content):
            try:
                self.logger.info(f"πŸ“ Inserting document {i + 1}/{len(all_content)} ({len(content)} chars)")

                entities_before = await self._count_entities(rag)

                # Insert with timeout
                insertion_task = asyncio.create_task(rag.ainsert(content))

                try:
                    await asyncio.wait_for(insertion_task, timeout=45.0)  # 30 second timeout per document
                    successful_insertions += 1
                    self.logger.info(f"βœ… Document {i + 1} inserted successfully")

                    # Brief pause between insertions
                    await asyncio.sleep(2)
                    entities_after = await self._count_entities(rag)
                    entities_added = entities_after - entities_before

                    self.logger.info(
                        f"βœ… Document {i + 1} inserted - Entities added: {entities_added} (total: {entities_after})")

                    await asyncio.sleep(1)

                except asyncio.TimeoutError:
                    self.logger.error(f"⏰ Document {i + 1} insertion timed out after 30 seconds")
                    insertion_task.cancel()
                    continue

            except Exception as e:
                self.logger.error(f"❌ Failed to insert document {i + 1}: {e}")
                continue

        self.logger.info(f"πŸ“Š Insertion complete: {successful_insertions}/{len(all_content)} documents successful")

        # Force storage verification with timeout
        if successful_insertions > 0:
            self.logger.info("πŸ” Final validation and cleaning...")
            await asyncio.sleep(5)  # Wait for processing

            is_valid = await self.validate_extracted_entities(rag, all_content)

            if not is_valid:
                self.logger.warning("🧹 Cleaning hallucinated entities...")
                await self.clean_hallucinated_entities(rag, all_content)

            # Final verification
            final_entities = await self._count_entities(rag)
            final_relationships = await self._count_relationships(rag)
            final_chunks = await self._count_chunks(rag)

            self.logger.info(
                f"πŸ“Š Final counts after cleaning: {final_chunks} chunks, {final_entities} entities, {final_relationships} relationships")

            if final_entities > 0:
                self.logger.info("πŸŽ‰ Entity extraction SUCCESS - HYBRID mode should work!")
            else:
                self.logger.warning("⚠️ No entities extracted - HYBRID mode will fail")
            # Show cleaned entities

            try:
                # Check storage files
                storage_verified = False
                for storage_file in ['vdb_chunks.json', 'vdb_entities.json', 'vdb_relationships.json']:
                    file_path = f"{rag.working_dir}/{storage_file}"
                    if os.path.exists(file_path) and os.path.getsize(file_path) > 100:
                        with open(file_path, 'r') as f:
                            data = json.load(f)
                            if data.get('data') and len(data['data']) > 0:
                                storage_verified = True
                                self.logger.info(f"βœ… {storage_file}: {len(data['data'])} items")

                if storage_verified:
                    self.logger.info("πŸŽ‰ Storage verification PASSED")
                else:
                    self.logger.error("❌ Storage verification FAILED")

            except Exception as e:
                self.logger.error(f"❌ Storage verification error: {e}")

            self.logger.info("πŸ” Starting entity extraction debugging...")
            await self.debug_entity_extraction(rag)

        return successful_insertions > 0

    async def _count_entities(self, rag: LightRAG) -> int:
        """Count entities in storage"""
        try:
            entities_file = f"{rag.working_dir}/vdb_entities.json"
            if os.path.exists(entities_file):
                with open(entities_file, 'r') as f:
                    data = json.load(f)
                return len(data.get('data', []))
            return 0
        except:
            return 0

    async def _count_relationships(self, rag: LightRAG) -> int:
        """Count relationships in storage"""
        try:
            relationships_file = f"{rag.working_dir}/vdb_relationships.json"
            if os.path.exists(relationships_file):
                with open(relationships_file, 'r') as f:
                    data = json.load(f)
                return len(data.get('data', []))
            return 0
        except:
            return 0

    async def _count_chunks(self, rag: LightRAG) -> int:
        """Count chunks in storage"""
        try:
            chunks_file = f"{rag.working_dir}/vdb_chunks.json"
            if os.path.exists(chunks_file):
                with open(chunks_file, 'r') as f:
                    data = json.load(f)
                return len(data.get('data', []))
            return 0
        except:
            return 0

    # Add this method to your PersistentLightRAGManager class

    async def fix_entity_extraction_for_custom_ai(self, rag: LightRAG, content_list: List[str]):
        """Fix entity extraction issues for custom AI"""

        try:
            self.logger.info("πŸ”§ Starting entity extraction fix...")

            # Clear existing corrupted data
            for storage_file in ['vdb_entities.json', 'vdb_chunks.json', 'vdb_relationships.json']:
                file_path = f"{rag.working_dir}/{storage_file}"
                if os.path.exists(file_path):
                    # Backup the file
                    backup_path = f"{file_path}.backup"
                    shutil.copy2(file_path, backup_path)
                    self.logger.info(f"πŸ“‹ Backed up {storage_file}")

            # Try different LLM models for entity extraction
            successful_extractions = 0

            for i, content in enumerate(content_list):
                if len(content.strip()) < 50:  # Skip very short content
                    continue

                try:
                    self.logger.info(f"πŸ” Processing content chunk {i + 1}/{len(content_list)}")

                    # Use a more explicit prompt for entity extraction
                    enhanced_prompt = f"""
    You are an expert at extracting entities and relationships from text. 

    Extract entities and relationships from this text and return ONLY the extracted information in the exact format requested.

    Text to analyze:
    {content[:2000]}  

    Requirements:
    1. Extract ALL important entities (people, organizations, locations, concepts, objects)
    2. For each entity provide: name, type (person/organization/geo/event/category), description
    3. Extract relationships between entities with descriptions and strength (1-10)
    4. Identify high-level keywords that summarize main concepts
    5. Ignore all entities and do not add if they are: Alex, Taylor, Jordan, Cruz, The Device.
    6. Make sure to double check if this entity is actually in the text or are you just hallucinating it.

    Return the results in this exact format:
    entity<entity_name><|><entity_type><|><entity_description>
    relationship<source_entity><|><target_entity><|><relationship_description><|><keywords><|><strength>
    content_keywords<high_level_keywords>

    Use ## to separate each item.
    """

                    # Use timeout for entity extraction
                    extraction_task = asyncio.create_task(
                        rag.ainsert(content[:3000])  # Limit content size
                    )

                    try:
                        await asyncio.wait_for(extraction_task, timeout=45.0)
                        successful_extractions += 1
                        self.logger.info(f"βœ… Successfully processed chunk {i + 1}")

                        # Add delay between insertions
                        await asyncio.sleep(2)

                    except asyncio.TimeoutError:
                        self.logger.warning(f"⏰ Chunk {i + 1} timed out")
                        extraction_task.cancel()
                        continue

                except Exception as e:
                    self.logger.error(f"❌ Failed to process chunk {i + 1}: {e}")
                    continue

            # Verify the results
            await asyncio.sleep(5)  # Wait for processing

            entities_count = await self._count_entities(rag)
            chunks_count = await self._count_chunks(rag)
            relationships_count = await self._count_relationships(rag)

            self.logger.info(
                f"πŸ“Š Extraction results: {chunks_count} chunks, {entities_count} entities, {relationships_count} relationships")

            if entities_count > 0:
                self.logger.info("πŸŽ‰ Entity extraction fix SUCCESS!")
                return True
            else:
                self.logger.error("❌ Entity extraction fix FAILED - no entities found")
                return False

        except Exception as e:
            self.logger.error(f"❌ Entity extraction fix failed: {e}")
            return False

    # Also add this helper method
    async def force_rebuild_custom_ai(self, ai_id: str, user_id: str):
        """Force rebuild a custom AI from scratch"""

        try:
            self.logger.info(f"πŸ”§ Force rebuilding custom AI: {ai_id}")

            # Get the AI details and uploaded files
            async with self.db.pool.acquire() as conn:
                # Get custom AI info
                ai_info = await conn.fetchrow("""
                    SELECT * FROM rag_instances 
                    WHERE ai_id = $1 AND user_id = $2 AND ai_type = 'custom'
                """, ai_id, user_id)

                if not ai_info:
                    self.logger.error(f"❌ Custom AI not found: {ai_id}")
                    return False

                # Get uploaded files
                files = await conn.fetch("""
                    SELECT content_text, original_name FROM knowledge_files
                    WHERE rag_instance_id = $1 AND filename != 'lightrag_storage.json'
                    AND processing_status = 'processed'
                """, ai_info['id'])

            if not files:
                self.logger.error(f"❌ No files found for custom AI: {ai_id}")
                return False

            # Create new RAG config
            config = RAGConfig(
                ai_type="custom",
                user_id=user_id,
                ai_id=ai_id,
                name=ai_info['name'],
                description=ai_info['description']
            )

            # Create fresh RAG instance
            rag = await self._create_new_rag_instance(config)

            # Re-process all files with fixed entity extraction
            content_list = []
            for file_record in files:
                if file_record['content_text']:
                    content_list.append(file_record['content_text'])

            # Use the fixed entity extraction
            success = await self.fix_entity_extraction_for_custom_ai(rag, content_list)

            if success:
                # Save the rebuilt RAG
                await self._save_to_database(config, rag)

                # Clear cache
                cache_key = config.get_cache_key()
                if cache_key in self.rag_instances:
                    del self.rag_instances[cache_key]

                self.logger.info(f"βœ… Successfully rebuilt custom AI: {ai_id}")
                return True
            else:
                self.logger.error(f"❌ Failed to rebuild custom AI: {ai_id}")
                return False

        except Exception as e:
            self.logger.error(f"❌ Force rebuild failed: {e}")
            return False

    async def _force_storage_to_database(self, rag: LightRAG, rag_instance_id: str):
        try:
            entities_file = f"{rag.working_dir}/vdb_entities.json"
            chunks_file = f"{rag.working_dir}/vdb_chunks.json"
            relationships_file = f"{rag.working_dir}/vdb_relationships.json"

            storage_data = {}
            total_items = 0

            storage_files = {
                'vdb_entities': entities_file,
                'vdb_chunks': chunks_file,
                'vdb_relationships': relationships_file
            }

            for storage_key, file_path in storage_files.items():
                if os.path.exists(file_path):
                    try:
                        with open(file_path, 'r') as f:
                            file_data = json.load(f)

                        if isinstance(file_data, dict) and 'data' in file_data:
                            item_count = len(file_data.get('data', []))
                            total_items += item_count
                            storage_data[storage_key] = file_data

                            self.logger.info(f"βœ… Read {storage_key}: {item_count} items")
                        else:
                            self.logger.warning(f"⚠️ Invalid format in {file_path}")
                            storage_data[storage_key] = {"data": [], "matrix": ""}

                    except Exception as e:
                        self.logger.error(f"❌ Failed to read {file_path}: {e}")
                        storage_data[storage_key] = {"data": [], "matrix": ""}
                else:
                    self.logger.warning(f"⚠️ Storage file not found: {file_path}")
                    storage_data[storage_key] = {"data": [], "matrix": ""}

            # Only proceed if we have some data
            if total_items > 0 and storage_data:
                try:
                    async with self.db.pool.acquire() as conn:
                        # Check if rag_instance exists
                        instance_exists = await conn.fetchval("""
                            SELECT COUNT(*) FROM rag_instances WHERE id = $1::uuid
                        """, rag_instance_id)

                        if not instance_exists:
                            self.logger.error(f"❌ RAG instance {rag_instance_id} does not exist")
                            return False

                        # Insert the knowledge file record with complete storage data
                        await conn.execute("""
                            INSERT INTO knowledge_files (
                                id, user_id, rag_instance_id, filename, original_name, 
                                file_type, file_size, blob_url, content_text, 
                                processing_status, token_count, created_at, updated_at
                            ) VALUES (
                                gen_random_uuid(), 'system', $1::uuid, 'lightrag_storage.json', 
                                'LightRAG Storage Data', 'json', $2, 'database://storage', $3, 
                                'processed', $4, NOW(), NOW()
                            ) ON CONFLICT (rag_instance_id, filename) DO UPDATE SET
                                content_text = EXCLUDED.content_text,
                                file_size = EXCLUDED.file_size,
                                token_count = EXCLUDED.token_count,
                                updated_at = NOW()
                        """, rag_instance_id, len(json.dumps(storage_data)), json.dumps(storage_data), total_items)

                        self.logger.info(
                            f"βœ… Stored LightRAG data for instance {rag_instance_id}: {total_items} total items")

                        # Log detailed breakdown
                        for key, data in storage_data.items():
                            item_count = len(data.get('data', []))
                            self.logger.info(f"   - {key}: {item_count} items")

                        return True

                except Exception as e:
                    self.logger.error(f"❌ Database storage failed: {e}")
                    import traceback
                    self.logger.error(f"Full traceback: {traceback.format_exc()}")
                    return False
            else:
                if not storage_data:
                    self.logger.warning("⚠️ No storage data to save")
                else:
                    self.logger.warning(f"⚠️ No items found in storage data (total: {total_items})")
                return False

        except Exception as e:
            self.logger.error(f"❌ Failed to store to database: {e}")
            import traceback
            self.logger.error(f"Full traceback: {traceback.format_exc()}")
            return False

    async def _wait_for_pipeline_completion(self, rag: LightRAG, doc_name: str, max_wait_time: int = 30):
        """Wait for LightRAG 1.3.7 pipeline to complete processing"""

        for attempt in range(max_wait_time):
            try:
                await asyncio.sleep(1)

                if hasattr(rag, 'doc_status') and rag.doc_status:
                    status_data = await rag.doc_status.get_all()
                    if status_data:
                        completed_docs = [doc for doc in status_data if 'completed' in str(doc).lower()]
                        if completed_docs:
                            self.logger.info(f"Pipeline processing detected for {doc_name}")
                            return True

                if hasattr(rag.vector_storage, '_data') and rag.vector_storage._data:
                    data_count = len(rag.vector_storage._data)
                    if data_count > 0:
                        self.logger.info(f"Vector storage contains {data_count} items after {doc_name}")
                        return True

                if hasattr(rag, 'chunks') and rag.chunks:
                    chunks_data = await rag.chunks.get_all()
                    if chunks_data and len(chunks_data) > 0:
                        self.logger.info(f"Chunks storage contains {len(chunks_data)} items after {doc_name}")
                        return True

            except Exception as e:
                self.logger.debug(f"Pipeline check attempt {attempt + 1} failed: {e}")
                continue

        self.logger.warning(f"Pipeline completion check timed out for {doc_name}")
        return False

    async def _verify_knowledge_base_state(self, rag: LightRAG):
        """Verify the final state of the knowledge base"""

        try:
            storage_stats = {}

            if hasattr(rag.vector_storage, '_data'):
                storage_stats['vector_items'] = len(rag.vector_storage._data) if rag.vector_storage._data else 0

            if hasattr(rag, 'chunks') and rag.chunks:
                try:
                    chunks_data = await rag.chunks.get_all()
                    storage_stats['chunks'] = len(chunks_data) if chunks_data else 0
                except:
                    storage_stats['chunks'] = 0

            if hasattr(rag, 'entities') and rag.entities:
                try:
                    entities_data = await rag.entities.get_all()
                    storage_stats['entities'] = len(entities_data) if entities_data else 0
                except:
                    storage_stats['entities'] = 0

            if hasattr(rag, 'relationships') and rag.relationships:
                try:
                    relationships_data = await rag.relationships.get_all()
                    storage_stats['relationships'] = len(relationships_data) if relationships_data else 0
                except:
                    storage_stats['relationships'] = 0

            self.logger.info(f"Knowledge base state: {storage_stats}")

            return any(count > 0 for count in storage_stats.values())

        except Exception as e:
            self.logger.error(f"Failed to verify knowledge base state: {e}")
            return False

    def _intelligent_chunk_split(self, content: str, max_chunk_size: int = 8000) -> List[str]:
        """Split content intelligently on sentence and paragraph boundaries"""

        if len(content) <= max_chunk_size:
            return [content]

        chunks = []
        current_chunk = ""

        paragraphs = content.split('\n\n')

        for paragraph in paragraphs:
            if len(paragraph) > max_chunk_size:
                sentences = paragraph.split('. ')
                for sentence in sentences:
                    if len(current_chunk) + len(sentence) + 2 <= max_chunk_size:
                        current_chunk += sentence + '. '
                    else:
                        if current_chunk:
                            chunks.append(current_chunk.strip())
                        current_chunk = sentence + '. '
            else:
                if len(current_chunk) + len(paragraph) + 2 <= max_chunk_size:
                    current_chunk += paragraph + '\n\n'
                else:
                    if current_chunk:
                        chunks.append(current_chunk.strip())
                    current_chunk = paragraph + '\n\n'

        if current_chunk:
            chunks.append(current_chunk.strip())

        return chunks

    def _split_content_into_chunks(self, content: str, max_length: int) -> List[str]:
        """Split content into manageable chunks"""
        chunks = []
        words = content.split()
        current_chunk = []
        current_length = 0

        for word in words:
            if current_length + len(word) + 1 <= max_length:
                current_chunk.append(word)
                current_length += len(word) + 1
            else:
                if current_chunk:
                    chunks.append(' '.join(current_chunk))
                current_chunk = [word]
                current_length = len(word)

        if current_chunk:
            chunks.append(' '.join(current_chunk))

        return chunks

    async def _save_to_database(self, config: RAGConfig, rag: LightRAG):
        """Save RAG instance to Database with CORRECT order of operations"""

        try:
            self.logger.info("πŸ’Ύ Starting database save process...")

            # STEP 1: Calculate metadata from actual storage files
            metadata = await self._calculate_storage_metadata(rag)

            # STEP 2: Create empty blob URLs (we're using database storage)
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            base_filename = f"rag_{config.ai_type}_{config.user_id or 'system'}_{config.ai_id or 'default'}_{timestamp}"

            fake_blob_urls = {
                'graph_blob_url': f"database://graph_{base_filename}",
                'vector_blob_url': f"database://vector_{base_filename}",
                'config_blob_url': f"database://config_{base_filename}"
            }

            # STEP 3: CREATE the rag_instance record FIRST
            rag_instance_id = await self.db.save_rag_instance(
                config,
                fake_blob_urls['graph_blob_url'],
                fake_blob_urls['vector_blob_url'],
                fake_blob_urls['config_blob_url'],
                metadata
            )

            self.logger.info(f"βœ… Created RAG instance in database: {rag_instance_id}")

            # STEP 4: NOW store the RAG data (with existing rag_instance_id)
            storage_success = await self._force_storage_to_database(rag, str(rag_instance_id))

            if storage_success:
                self.logger.info(f"βœ… Successfully saved complete RAG to database: {rag_instance_id}")
            else:
                self.logger.warning(f"⚠️ RAG instance created but storage data save failed: {rag_instance_id}")

        except Exception as e:
            self.logger.error(f"❌ Failed to save RAG to database: {e}")
            import traceback
            self.logger.error(f"Full traceback: {traceback.format_exc()}")
            raise

    async def _calculate_storage_metadata(self, rag: LightRAG) -> Dict[str, Any]:
        """Calculate metadata from RAG storage"""

        try:
            total_chunks = 0
            total_tokens = 0
            file_count = 0

            # Check storage files
            for storage_file in ['vdb_chunks.json', 'vdb_entities.json', 'vdb_relationships.json']:
                file_path = f"{rag.working_dir}/{storage_file}"
                if os.path.exists(file_path):
                    try:
                        with open(file_path, 'r') as f:
                            data = json.load(f)
                            if data.get('data'):
                                chunk_count = len(data['data'])
                                total_chunks += chunk_count

                                # Estimate tokens (rough calculation)
                                for item in data['data']:
                                    if isinstance(item, dict) and 'content' in item:
                                        # Rough token estimation: ~4 chars per token
                                        total_tokens += len(str(item['content'])) // 4

                        file_count += 1
                    except Exception as e:
                        self.logger.warning(f"Failed to read {storage_file}: {e}")

            return {
                'total_chunks': total_chunks,
                'total_tokens': max(total_tokens, 100),  # Minimum 100 tokens
                'file_count': file_count
            }

        except Exception as e:
            self.logger.error(f"Failed to calculate metadata: {e}")
            return {
                'total_chunks': 0,
                'total_tokens': 100,
                'file_count': 0
            }

    async def _load_from_database(self, config: RAGConfig) -> Optional[LightRAG]:
        """Load RAG from database with PROPER NanoVectorDB restoration"""

        try:
            # Get RAG instance metadata
            instance_data = await self.db.get_rag_instance(config)
            if not instance_data:
                self.logger.info(f"No RAG instance found in database for {config.get_cache_key()}")
                return None

            self.logger.info(f"πŸ” Found RAG instance: {instance_data['name']} (ID: {instance_data['id']})")

            # Check if we have storage data in knowledge_files table
            async with self.db.pool.acquire() as conn:
                storage_record = await conn.fetchrow("""
                    SELECT content_text, file_size, token_count 
                    FROM knowledge_files 
                    WHERE rag_instance_id = $1 AND filename = 'lightrag_storage.json'
                    AND processing_status = 'processed'
                    ORDER BY created_at DESC
                    LIMIT 1
                """, instance_data['id'])

            if not storage_record or not storage_record['content_text']:
                self.logger.warning(f"⚠️ No storage data found in database for RAG {instance_data['id']}")
                return None

            self.logger.info(
                f"🎯 Found database storage: {storage_record['file_size']} bytes, {storage_record['token_count']} tokens")

            try:
                # Parse the JSON storage data
                storage_data = json.loads(storage_record['content_text'])
                self.logger.info(f"πŸ“Š Parsed storage data with keys: {list(storage_data.keys())}")

                # CRITICAL: Check if we have chunks with actual content
                chunks_data = storage_data.get('vdb_chunks', {})
                if not chunks_data.get('data') or len(chunks_data['data']) == 0:
                    self.logger.warning("❌ No chunk data found in storage")
                    return None

                chunk_count = len(chunks_data['data'])
                self.logger.info(f"πŸ“¦ Found {chunk_count} chunks in storage")

                # Create working directory
                working_dir = f"/tmp/rag_restored_{uuid.uuid4()}"
                os.makedirs(working_dir, exist_ok=True)

                # Write storage files with PROPER NanoVectorDB format
                for filename, file_data in storage_data.items():
                    try:
                        file_path = f"{working_dir}/{filename}.json"

                        # CRITICAL: Ensure proper NanoVectorDB format
                        if isinstance(file_data, dict) and 'data' in file_data:
                            # NanoVectorDB expects the EXACT format from your data
                            with open(file_path, 'w') as f:
                                json.dump(file_data, f)

                            file_size = os.path.getsize(file_path)
                            self.logger.info(f"βœ… Wrote {filename}.json: {file_size} bytes")
                        else:
                            self.logger.warning(f"⚠️ Skipping {filename}: invalid format")

                    except Exception as e:
                        self.logger.error(f"❌ Failed to write {filename}: {e}")

                # Create LightRAG instance
                self.logger.info("πŸš€ Creating LightRAG instance with restored files")

                rag = LightRAG(
                    working_dir=working_dir,
                    max_parallel_insert=2,
                    llm_model_func=self.cloudflare_worker.query,
                    llm_model_name=self.cloudflare_worker.llm_models[0],
                    llm_model_max_token_size=4080,
                    embedding_func=EmbeddingFunc(
                        embedding_dim=1024,
                        max_token_size=2048,
                        func=self.cloudflare_worker.embedding_chunk,
                    ),
                    graph_storage="NetworkXStorage",
                    vector_storage="NanoVectorDBStorage",
                )

                # Initialize storages
                await rag.initialize_storages()
                self.logger.info("πŸ”„ Initialized storages")

                # Initialize pipeline status
                if not hasattr(rag, 'pipeline_status') or rag.pipeline_status is None:
                    rag.pipeline_status = {"history_messages": []}
                elif "history_messages" not in rag.pipeline_status:
                    rag.pipeline_status["history_messages"] = []

                # CRITICAL: Test with multiple query types
                self.logger.info("πŸ§ͺ Testing RAG with comprehensive queries...")

                # Test 1: Simple fire safety query
                try:
                    from lightrag import QueryParam
                    test_response = await rag.aquery(
                        "What are fire exit requirements?",
                        QueryParam(mode="hybrid")
                    )

                    if test_response and len(test_response.strip()) > 50 and not test_response.startswith("Sorry"):
                        self.logger.info(f"πŸŽ‰ SUCCESS: Hybrid query test passed - {len(test_response)} chars")
                        return rag
                    else:
                        self.logger.warning(f"⚠️ Hybrid query failed: '{test_response[:100]}'")

                except Exception as e:
                    self.logger.error(f"❌ Hybrid query test failed: {e}")

                # Test 2: Try local mode
                try:
                    local_response = await rag.aquery("fire safety", QueryParam(mode="local"))
                    if local_response and len(local_response.strip()) > 20 and not local_response.startswith("Sorry"):
                        self.logger.info(f"βœ… LOCAL query worked: {local_response[:100]}...")
                        return rag
                except Exception as e:
                    self.logger.error(f"❌ Local query failed: {e}")

                # Test 3: Try naive mode
                try:
                    naive_response = await rag.aquery("fire", QueryParam(mode="naive"))
                    if naive_response and len(naive_response.strip()) > 10 and not naive_response.startswith("Sorry"):
                        self.logger.info(f"βœ… NAIVE query worked: {naive_response[:100]}...")
                        return rag
                except Exception as e:
                    self.logger.error(f"❌ Naive query failed: {e}")

                # If all queries fail, return None
                self.logger.error("❌ ALL query tests failed - RAG is not functional")
                return None

            except json.JSONDecodeError as e:
                self.logger.error(f"❌ Failed to parse JSON storage data: {e}")
                return None
            except Exception as e:
                self.logger.error(f"❌ Failed to restore from database storage: {e}")
                import traceback
                self.logger.error(f"Full traceback: {traceback.format_exc()}")
                return None

        except Exception as e:
            self.logger.error(f"❌ Database loading failed: {e}")
            return None

    async def _verify_rag_storage(self, rag: LightRAG) -> bool:
        """Verify that RAG storage has been properly loaded with actual data"""
        try:
            # Check vector storage
            vector_count = 0
            if hasattr(rag.vector_storage, '_data') and rag.vector_storage._data:
                vector_count = len(rag.vector_storage._data)

            # Check chunks storage
            chunks_count = 0
            if hasattr(rag, 'chunks') and rag.chunks:
                try:
                    chunks_data = await rag.chunks.get_all()
                    chunks_count = len(chunks_data) if chunks_data else 0
                except:
                    pass

            # Check entities storage
            entities_count = 0
            if hasattr(rag, 'entities') and rag.entities:
                try:
                    entities_data = await rag.entities.get_all()
                    entities_count = len(entities_data) if entities_data else 0
                except:
                    pass

            # Check relationships storage
            relationships_count = 0
            if hasattr(rag, 'relationships') and rag.relationships:
                try:
                    relationships_data = await rag.relationships.get_all()
                    relationships_count = len(relationships_data) if relationships_data else 0
                except:
                    pass

            self.logger.info(
                f"πŸ“‹ RAG storage verification: vectors={vector_count}, chunks={chunks_count}, entities={entities_count}, relationships={relationships_count}")

            # Consider RAG loaded if ANY storage has data
            has_data = vector_count > 0 or chunks_count > 0 or entities_count > 0 or relationships_count > 0

            if has_data:
                self.logger.info("βœ… RAG verification PASSED - has working data")
            else:
                self.logger.warning("❌ RAG verification FAILED - no data found")

            return has_data

        except Exception as e:
            self.logger.error(f"Failed to verify RAG storage: {e}")
            return False

    async def _serialize_rag_state(self, rag: LightRAG) -> Dict[str, Any]:
        """Serialize RAG state for storage in Vercel Blob + Database"""

        try:
            rag_state = {
                'graph': {},
                'vectors': {},
                'config': {}
            }

            # Serialize graph storage (NetworkX)
            if hasattr(rag, 'graph_storage') and rag.graph_storage:
                try:
                    # Get the NetworkX graph data
                    if hasattr(rag.graph_storage, '_graph'):
                        import networkx as nx
                        graph_data = nx.node_link_data(rag.graph_storage._graph)
                        rag_state['graph'] = graph_data
                        self.logger.info(
                            f"πŸ“Š Serialized graph: {len(graph_data.get('nodes', []))} nodes, {len(graph_data.get('links', []))} edges")
                    else:
                        rag_state['graph'] = {}
                except Exception as e:
                    self.logger.warning(f"Failed to serialize graph storage: {e}")
                    rag_state['graph'] = {}

            # Serialize vector storage (NanoVectorDB)
            if hasattr(rag, 'vector_storage') and rag.vector_storage:
                try:
                    vectors_data = {
                        'embeddings': [],
                        'metadata': [],
                        'config': {
                            'embedding_dim': getattr(rag.vector_storage, 'embedding_dim', 1024),
                            'metric': getattr(rag.vector_storage, 'metric', 'cosine')
                        }
                    }

                    # Get vector data
                    if hasattr(rag.vector_storage, '_data') and rag.vector_storage._data:
                        vectors_data['embeddings'] = rag.vector_storage._data.tolist() if hasattr(
                            rag.vector_storage._data, 'tolist') else list(rag.vector_storage._data)

                    if hasattr(rag.vector_storage, '_metadata') and rag.vector_storage._metadata:
                        vectors_data['metadata'] = rag.vector_storage._metadata

                    rag_state['vectors'] = vectors_data
                    self.logger.info(f"πŸ“Š Serialized vectors: {len(vectors_data['embeddings'])} embeddings")

                except Exception as e:
                    self.logger.warning(f"Failed to serialize vector storage: {e}")
                    rag_state['vectors'] = {'embeddings': [], 'metadata': [], 'config': {}}

            # Serialize configuration and metadata
            rag_state['config'] = {
                'working_dir': rag.working_dir,
                'llm_model_name': getattr(rag, 'llm_model_name', ''),
                'llm_model_max_token_size': getattr(rag, 'llm_model_max_token_size', 4080),
                'graph_storage_type': 'NetworkXStorage',
                'vector_storage_type': 'NanoVectorDBStorage',
                'embedding_dim': 1024,
                'created_at': datetime.now().isoformat()
            }

            # Add pipeline status if available
            if hasattr(rag, 'pipeline_status') and rag.pipeline_status:
                rag_state['config']['pipeline_status'] = rag.pipeline_status

            self.logger.info(f"βœ… Successfully serialized RAG state")
            return rag_state

        except Exception as e:
            self.logger.error(f"Failed to serialize RAG state: {e}")
            # Return minimal state to avoid complete failure
            return {
                'graph': {},
                'vectors': {'embeddings': [], 'metadata': [], 'config': {}},
                'config': {
                    'working_dir': getattr(rag, 'working_dir', '/tmp/unknown'),
                    'created_at': datetime.now().isoformat()
                }
            }

    async def _deserialize_rag_state(self, rag_state: Dict[str, Any], working_dir: str) -> LightRAG:
        """Deserialize RAG state from Vercel Blob storage"""

        try:
            # Create new RAG instance
            rag = LightRAG(
                working_dir=working_dir,
                max_parallel_insert=2,
                llm_model_func=self.cloudflare_worker.query,
                llm_model_name=self.cloudflare_worker.llm_models[0],
                llm_model_max_token_size=4080,
                embedding_func=EmbeddingFunc(
                    embedding_dim=1024,
                    max_token_size=2048,
                    func=self.cloudflare_worker.embedding_chunk,
                ),
                graph_storage="NetworkXStorage",
                vector_storage="NanoVectorDBStorage",
            )

            # Initialize storages
            await rag.initialize_storages()

            # Restore graph data
            if rag_state.get('graph') and hasattr(rag, 'graph_storage'):
                try:
                    import networkx as nx
                    graph_data = rag_state['graph']
                    if graph_data and 'nodes' in graph_data:
                        restored_graph = nx.node_link_graph(graph_data)
                        rag.graph_storage._graph = restored_graph
                        self.logger.info(f"πŸ”„ Restored graph: {len(graph_data.get('nodes', []))} nodes")
                except Exception as e:
                    self.logger.warning(f"Failed to restore graph: {e}")

            # Restore vector data
            if rag_state.get('vectors') and hasattr(rag, 'vector_storage'):
                try:
                    vectors_data = rag_state['vectors']
                    if vectors_data.get('embeddings'):
                        embeddings = np.array(vectors_data['embeddings'])
                        rag.vector_storage._data = embeddings

                    if vectors_data.get('metadata'):
                        rag.vector_storage._metadata = vectors_data['metadata']

                    self.logger.info(f"πŸ”„ Restored vectors: {len(vectors_data.get('embeddings', []))} embeddings")
                except Exception as e:
                    self.logger.warning(f"Failed to restore vectors: {e}")

            # Restore configuration
            if rag_state.get('config'):
                config = rag_state['config']
                if config.get('pipeline_status'):
                    rag.pipeline_status = config['pipeline_status']

            # Ensure pipeline status is initialized
            if not hasattr(rag, 'pipeline_status') or rag.pipeline_status is None:
                rag.pipeline_status = {"history_messages": []}

            self.logger.info("βœ… Successfully deserialized RAG state")
            return rag

        except Exception as e:
            self.logger.error(f"Failed to deserialize RAG state: {e}")
            raise

    async def _estimate_tokens(self, rag_state: Dict[str, Any]) -> int:
        """Estimate token count from RAG state"""

        try:
            token_count = 0

            # Count tokens from vector embeddings
            if rag_state.get('vectors', {}).get('embeddings'):
                embeddings = rag_state['vectors']['embeddings']
                token_count += len(embeddings) * 10  # Rough estimate: 10 tokens per embedding

            # Count tokens from graph nodes
            if rag_state.get('graph', {}).get('nodes'):
                nodes = rag_state['graph']['nodes']
                token_count += len(nodes) * 5  # Rough estimate: 5 tokens per node

            # Count tokens from graph edges
            if rag_state.get('graph', {}).get('links'):
                links = rag_state['graph']['links']
                token_count += len(links) * 3  # Rough estimate: 3 tokens per edge

            return max(token_count, 100)  # Minimum 100 tokens

        except Exception as e:
            self.logger.warning(f"Failed to estimate tokens: {e}")
            return 100

    async def query_with_memory(
            self,
            ai_type: str,
            question: str,
            conversation_id: str,
            user_id: str,
            ai_id: Optional[str] = None,
            mode: str = "hybrid"
    ) -> str:
        """Query RAG with conversation memory"""
        try:
            # Get or create RAG instance
            rag_instance = await self.get_or_create_rag_instance(
                ai_type=ai_type,
                user_id=user_id if ai_type == "custom" else None,
                ai_id=ai_id,
                name=f"{ai_type.title()} AI",
                description=f"AI assistant for {ai_type}"
            )

            # Save user message to database
            await self.db.save_conversation_message(
                conversation_id, "user", question, {
                    "user_id": user_id,
                    "ai_type": ai_type,
                    "ai_id": ai_id
                }
            )

            # Query RAG with LightRAG QueryParam
            from lightrag import QueryParam
            response = await rag_instance.aquery(question, QueryParam(mode=mode))

            # Save assistant response to database
            await self.db.save_conversation_message(
                conversation_id, "assistant", response, {
                    "mode": mode,
                    "ai_type": ai_type,
                    "ai_id": ai_id,
                    "user_id": user_id
                }
            )

            return response

        except Exception as e:
            self.logger.error(f"Query with memory failed: {e}")
            # Fallback to direct Cloudflare query
            fallback_response = await self.cloudflare_worker.query(
                question,
                f"You are a helpful {ai_type} AI assistant."
            )

            # Save fallback response
            await self.db.save_conversation_message(
                conversation_id, "assistant", fallback_response, {
                    "mode": "fallback",
                    "ai_type": ai_type,
                    "user_id": user_id,
                    "error": str(e)
                }
            )

            return fallback_response

    async def _load_from_blob_storage(self, instance_data: Dict[str, Any]) -> Optional[LightRAG]:
        """Load RAG from Vercel Blob storage (fallback method)"""

        try:
            self.logger.info("πŸ”„ Loading RAG from Vercel Blob storage")

            # Download RAG state from Vercel Blob
            self.logger.info("πŸ“₯ Downloading RAG state from Vercel Blob...")

            graph_data = await self.blob_client.get(instance_data['graph_blob_url'])
            vector_data = await self.blob_client.get(instance_data['vector_blob_url'])
            config_data = await self.blob_client.get(instance_data['config_blob_url'])

            # Decompress and deserialize
            graph_state = pickle.loads(gzip.decompress(graph_data))
            vector_state = pickle.loads(gzip.decompress(vector_data))
            config_state = pickle.loads(gzip.decompress(config_data))

            rag_state = {
                'graph': graph_state,
                'vectors': vector_state,
                'config': config_state
            }

            self.logger.info("βœ… Successfully downloaded and deserialized RAG state")

            # Create working directory
            working_dir = f"/tmp/rag_restored_{uuid.uuid4()}"
            os.makedirs(working_dir, exist_ok=True)

            # Deserialize RAG instance
            rag = await self._deserialize_rag_state(rag_state, working_dir)

            return rag

        except Exception as e:
            self.logger.error(f"❌ Failed to load RAG from Vercel Blob: {e}")
            return None

    async def test_model_entity_extraction(self):
        """Test different models to see which extracts entities best"""

        test_content = """
        Fire extinguishers are required in commercial buildings. Type A fire extinguishers are used for ordinary combustible materials like wood and paper. Emergency exits must be clearly marked with illuminated exit signs. Sprinkler systems are mandatory in buildings over 15,000 square feet. Building codes require fire-resistant construction materials.
        """

        results = {}

        for i, model in enumerate(self.llm_models[:5]):  # Test top 5 models
            try:
                self.logger.info(f"πŸ§ͺ Testing entity extraction with {model}")

                # Temporarily switch to this model
                original_index = self.current_llm_index
                self.current_llm_index = i

                # Test entity extraction
                response = await self.query(
                    f"Extract all important technical entities, concepts, and objects from this text. List each entity with a brief description:\n\n{test_content}",
                    "You are an expert at identifying technical entities and concepts in specialized documents."
                )

                # Count how many entities it found (rough estimate)
                entity_count = response.count('\n') if response else 0

                results[model] = {
                    "response_length": len(response) if response else 0,
                    "estimated_entities": entity_count,
                    "response_preview": response[:200] if response else "No response"
                }

                self.logger.info(
                    f"   πŸ“Š {model}: {entity_count} estimated entities, {len(response) if response else 0} chars")

                # Restore original index
                self.current_llm_index = original_index

            except Exception as e:
                results[model] = {"error": str(e)}
                self.logger.error(f"   ❌ {model} failed: {e}")

        # Find the best model
        best_model = None
        best_score = 0

        for model, result in results.items():
            if "error" not in result:
                score = result.get("estimated_entities", 0) + (result.get("response_length", 0) // 100)
                if score > best_score:
                    best_score = score
                    best_model = model

        if best_model:
            self.logger.info(f"πŸ† Best model for entity extraction: {best_model}")
            # Switch to the best model
            self.current_llm_index = self.llm_models.index(best_model)

        return results


# Global instance
lightrag_manager: Optional[PersistentLightRAGManager] = None


# Replace the initialize_lightrag_manager function with correct logger usage

async def initialize_lightrag_manager() -> PersistentLightRAGManager:
    """Initialize with OPTIMIZED models for entity extraction"""
    global lightrag_manager

    if lightrag_manager is None:
        # Get logger for this function
        func_logger = logging.getLogger(__name__)

        # Validate environment
        validate_environment()

        # Get environment variables
        cloudflare_api_key = os.getenv("CLOUDFLARE_API_KEY")
        cloudflare_account_id = os.getenv("CLOUDFLARE_ACCOUNT_ID")
        database_url = os.getenv("DATABASE_URL")
        redis_url = os.getenv("REDIS_URL")
        blob_token = os.getenv("BLOB_READ_WRITE_TOKEN")

        # Initialize Cloudflare worker with BEST models
        api_base_url = f"https://api.cloudflare.com/client/v4/accounts/{cloudflare_account_id}/ai/run/"
        cloudflare_worker = CloudflareWorker(
            cloudflare_api_key=cloudflare_api_key,
            api_base_url=api_base_url,
            llm_model_name="@cf/meta/llama-3.1-8b-instruct",  # Start with BEST model
            embedding_model_name="@cf/baai/bge-large-en-v1.5"  # Start with BEST embedding
        )

        # Test the enhanced model
        func_logger.info("πŸ§ͺ Testing enhanced model configuration...")
        try:
            test_response = await cloudflare_worker.query(
                "Extract entities from: Fire extinguishers are required in commercial buildings.",
                "You are an expert at identifying technical entities and concepts."
            )
            func_logger.info(f"βœ… Model test successful: {test_response[:100]}...")
        except Exception as e:
            func_logger.warning(f"⚠️ Model test failed: {e}")

        # Initialize database manager
        db_manager = DatabaseManager(database_url, redis_url)
        await db_manager.connect()

        # Initialize blob client
        blob_client = VercelBlobClient(blob_token)

        # Create manager
        lightrag_manager = PersistentLightRAGManager(
            cloudflare_worker, db_manager, blob_client
        )

    return lightrag_manager


def get_lightrag_manager() -> Optional[PersistentLightRAGManager]:
    """Get the current LightRAG manager instance"""
    return lightrag_manager