safetyAI / main.py
al1kss's picture
Create main.py
a55f078 verified
raw
history blame
6.73 kB
# main.py - FastAPI Backend
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
import os
import requests
import numpy as np
from typing import List
# Your CloudflareWorker class
class CloudflareWorker:
def __init__(self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str):
self.cloudflare_api_key = cloudflare_api_key
self.api_base_url = api_base_url
self.llm_model_name = llm_model_name
self.embedding_model_name = embedding_model_name
self.max_tokens = 4080
self.max_response_tokens = 4080
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
try:
response_raw = requests.post(
f"{self.api_base_url}{model_name}",
headers=headers,
json=input_
).json()
result = response_raw.get("result", {})
if "data" in result:
return np.array(result["data"])
if "response" in result:
return result["response"]
raise ValueError(f"Unexpected response format: {response_raw}")
except Exception as e:
print(f"Cloudflare API Error: {e}")
return None
async def query(self, prompt: str, system_prompt: str = '', **kwargs) -> str:
kwargs.pop("hashing_kv", None)
message = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
input_ = {
"messages": message,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
result = await self._send_request(self.llm_model_name, input_, "")
return result if result is not None else "Error: Failed to get response"
async def embedding_chunk(self, texts: List[str]) -> np.ndarray:
input_ = {
"text": texts,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
result = await self._send_request(self.embedding_model_name, input_, "")
if result is None:
return np.random.rand(len(texts), 1024).astype(np.float32)
return result
# Configuration
CLOUDFLARE_API_KEY = os.getenv('CLOUDFLARE_API_KEY', 'lMbDDfHi887AK243ZUenm4dHV2nwEx2NSmX6xuq5')
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/07c4bcfbc1891c3e528e1c439fee68bd/ai/run/"
EMBEDDING_MODEL = '@cf/baai/bge-m3'
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
WORKING_DIR = "./dickens"
# Initialize FastAPI
app = FastAPI(title="Fire Safety AI Assistant API", version="1.0.0")
# Enable CORS for frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, replace with your frontend domain
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global RAG instance
rag_instance = None
# Pydantic models
class QuestionRequest(BaseModel):
question: str
mode: str = "hybrid" # naive, local, global, hybrid
class QuestionResponse(BaseModel):
answer: str
mode: str
status: str
@app.on_event("startup")
async def startup_event():
"""Initialize RAG system on startup"""
global rag_instance
print("πŸ”„ Initializing RAG system...")
cloudflare_worker = CloudflareWorker(
cloudflare_api_key=CLOUDFLARE_API_KEY,
api_base_url=API_BASE_URL,
embedding_model_name=EMBEDDING_MODEL,
llm_model_name=LLM_MODEL,
)
rag_instance = LightRAG(
working_dir=WORKING_DIR,
max_parallel_insert=2,
llm_model_func=cloudflare_worker.query,
llm_model_name=LLM_MODEL,
llm_model_max_token_size=4080,
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=2048,
func=lambda texts: cloudflare_worker.embedding_chunk(texts),
),
)
await rag_instance.initialize_storages()
print("βœ… RAG system initialized!")
@app.get("/")
async def root():
return {"message": "πŸ”₯ Fire Safety AI Assistant API", "status": "running"}
@app.get("/health")
async def health_check():
return {"status": "healthy", "rag_ready": rag_instance is not None}
@app.post("/ask", response_model=QuestionResponse)
async def ask_question(request: QuestionRequest):
"""Ask a question to the Fire Safety AI"""
if not rag_instance:
raise HTTPException(status_code=503, detail="RAG system not initialized")
if not request.question.strip():
raise HTTPException(status_code=400, detail="Question cannot be empty")
try:
# Query the RAG system
print(f"πŸ” Processing question: {request.question}")
response = await rag_instance.aquery(
request.question,
param=QueryParam(mode=request.mode)
)
return QuestionResponse(
answer=response,
mode=request.mode,
status="success"
)
except Exception as e:
print(f"❌ Error processing question: {e}")
raise HTTPException(status_code=500, detail=f"Error processing question: {str(e)}")
@app.get("/modes")
async def get_available_modes():
"""Get available query modes"""
return {
"modes": [
{"name": "naive", "description": "Simple text search"},
{"name": "local", "description": "Search specific document sections"},
{"name": "global", "description": "Look at overall document themes"},
{"name": "hybrid", "description": "Combined approach (recommended)"}
]
}
# Example questions endpoint
@app.get("/examples")
async def get_example_questions():
"""Get example questions users can ask"""
return {
"examples": [
"What are the requirements for emergency exits?",
"How many exits does a building need?",
"What are fire safety rules for stairwells?",
"What are building safety requirements?",
"What are the fire safety regulations for high-rise buildings?",
"What are the requirements for fire doors?",
"How should evacuation routes be designed?"
]
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)