Update app.py
Browse files
app.py
CHANGED
|
@@ -1,770 +1,247 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
-
import
|
| 4 |
import hashlib
|
| 5 |
import shutil
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
import requests
|
| 9 |
-
from datetime import datetime, timedelta
|
| 10 |
from pathlib import Path
|
| 11 |
-
from typing import List, Dict,
|
| 12 |
|
| 13 |
-
|
| 14 |
-
from fastapi import FastAPI, HTTPException, Depends, File, UploadFile
|
| 15 |
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
-
from fastapi.
|
| 17 |
from pydantic import BaseModel, EmailStr
|
| 18 |
-
import aiohttp
|
| 19 |
-
import jwt
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
import
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
name: str
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
class QuestionRequest(BaseModel):
|
| 35 |
question: str
|
| 36 |
-
mode: str = "hybrid"
|
| 37 |
conversation_id: Optional[str] = None
|
| 38 |
|
| 39 |
-
class CustomAIRequest(BaseModel):
|
| 40 |
-
name: str
|
| 41 |
-
description: str
|
| 42 |
-
|
| 43 |
class QuestionResponse(BaseModel):
|
| 44 |
answer: str
|
| 45 |
mode: str
|
| 46 |
status: str
|
| 47 |
conversation_id: Optional[str] = None
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
class FileUploadResponse(BaseModel):
|
| 50 |
filename: str
|
| 51 |
size: int
|
| 52 |
message: str
|
| 53 |
|
| 54 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
class DatabaseManager:
|
| 56 |
-
def __init__(self):
|
| 57 |
-
self.
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
async def connect(self):
|
| 61 |
-
"""Initialize database connections"""
|
| 62 |
-
# PostgreSQL connection
|
| 63 |
-
database_url = os.getenv('DATABASE_URL')
|
| 64 |
-
if database_url:
|
| 65 |
-
try:
|
| 66 |
-
self.pool = await asyncpg.create_pool(database_url, max_size=20)
|
| 67 |
-
print("✅ PostgreSQL connected successfully")
|
| 68 |
-
except Exception as e:
|
| 69 |
-
print(f"❌ PostgreSQL connection failed: {e}")
|
| 70 |
-
self.pool = None
|
| 71 |
|
| 72 |
-
# Redis connection
|
| 73 |
-
redis_url = os.getenv('REDIS_URL')
|
| 74 |
-
if redis_url:
|
| 75 |
-
try:
|
| 76 |
-
self.redis = redis.from_url(redis_url, decode_responses=True)
|
| 77 |
-
await self.redis.ping()
|
| 78 |
-
print("✅ Redis connected successfully")
|
| 79 |
-
except Exception as e:
|
| 80 |
-
print(f"❌ Redis connection failed: {e}")
|
| 81 |
-
self.redis = None
|
| 82 |
-
|
| 83 |
-
async def close(self):
|
| 84 |
-
"""Close database connections"""
|
| 85 |
-
if self.pool:
|
| 86 |
-
await self.pool.close()
|
| 87 |
-
if self.redis:
|
| 88 |
-
await self.redis.close()
|
| 89 |
-
|
| 90 |
async def execute_query(self, query: str, *args):
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
async with self.pool.acquire() as connection:
|
| 96 |
-
try:
|
| 97 |
-
if query.strip().upper().startswith('SELECT'):
|
| 98 |
-
return await connection.fetch(query, *args)
|
| 99 |
-
else:
|
| 100 |
-
return await connection.execute(query, *args)
|
| 101 |
-
except Exception as e:
|
| 102 |
-
print(f"Database query error: {e}")
|
| 103 |
-
raise HTTPException(status_code=500, detail="Database operation failed")
|
| 104 |
|
| 105 |
-
async def cache_set(self, key: str, value:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
try:
|
| 109 |
-
await self.redis.setex(key, ttl, json.dumps(value))
|
| 110 |
-
return True
|
| 111 |
-
except Exception as e:
|
| 112 |
-
print(f"Cache set error: {e}")
|
| 113 |
-
return False
|
| 114 |
|
| 115 |
async def cache_get(self, key: str):
|
| 116 |
-
|
| 117 |
-
if self.redis:
|
| 118 |
-
try:
|
| 119 |
-
value = await self.redis.get(key)
|
| 120 |
-
return json.loads(value) if value else None
|
| 121 |
-
except Exception as e:
|
| 122 |
-
print(f"Cache get error: {e}")
|
| 123 |
return None
|
| 124 |
|
| 125 |
async def cache_delete(self, key: str):
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
try:
|
| 129 |
-
await self.redis.delete(key)
|
| 130 |
-
return True
|
| 131 |
-
except Exception as e:
|
| 132 |
-
print(f"Cache delete error: {e}")
|
| 133 |
-
return False
|
| 134 |
|
| 135 |
# Initialize database manager
|
| 136 |
-
db_manager = DatabaseManager()
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
self.llm_model_name = llm_model_name
|
| 144 |
-
self.max_tokens = max_tokens
|
| 145 |
-
|
| 146 |
-
async def _send_request(self, model_name: str, input_data: dict) -> str:
|
| 147 |
-
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
|
| 148 |
-
url = f"{self.api_base_url}{model_name}"
|
| 149 |
-
|
| 150 |
-
async with aiohttp.ClientSession() as session:
|
| 151 |
-
async with session.post(url, headers=headers, json=input_data) as response:
|
| 152 |
-
if response.status == 200:
|
| 153 |
-
result = await response.json()
|
| 154 |
-
return result["result"]["response"]
|
| 155 |
-
else:
|
| 156 |
-
error_text = await response.text()
|
| 157 |
-
raise HTTPException(status_code=response.status, detail=f"Cloudflare API error: {error_text}")
|
| 158 |
-
|
| 159 |
-
async def query(self, prompt: str, system_prompt: str = '') -> str:
|
| 160 |
-
message = [
|
| 161 |
-
{"role": "system", "content": system_prompt},
|
| 162 |
-
{"role": "user", "content": prompt}
|
| 163 |
-
]
|
| 164 |
-
|
| 165 |
-
input_ = {
|
| 166 |
-
"messages": message,
|
| 167 |
-
"max_tokens": self.max_tokens,
|
| 168 |
-
}
|
| 169 |
-
|
| 170 |
-
result = await self._send_request(self.llm_model_name, input_)
|
| 171 |
-
return result
|
| 172 |
-
|
| 173 |
-
# User Management with Database
|
| 174 |
-
class UserManager:
|
| 175 |
-
@staticmethod
|
| 176 |
-
def hash_email(email: str) -> str:
|
| 177 |
-
return hashlib.md5(email.encode()).hexdigest()[:12]
|
| 178 |
-
|
| 179 |
-
@staticmethod
|
| 180 |
-
async def create_user(email: str, name: str) -> dict:
|
| 181 |
-
hashed_email = UserManager.hash_email(email)
|
| 182 |
-
user_id = str(uuid.uuid4())
|
| 183 |
-
|
| 184 |
-
# Check if user exists
|
| 185 |
-
existing_query = "SELECT id FROM users WHERE email = $1"
|
| 186 |
-
existing = await db_manager.execute_query(existing_query, email)
|
| 187 |
-
if existing:
|
| 188 |
-
raise HTTPException(status_code=400, detail="User already exists")
|
| 189 |
-
|
| 190 |
-
# Create user
|
| 191 |
-
query = """
|
| 192 |
-
INSERT INTO users (id, email, name, hashed_email, created_at, updated_at)
|
| 193 |
-
VALUES ($1, $2, $3, $4, $5, $6)
|
| 194 |
-
RETURNING id, email, name, created_at
|
| 195 |
-
"""
|
| 196 |
-
|
| 197 |
-
now = datetime.now()
|
| 198 |
-
result = await db_manager.execute_query(
|
| 199 |
-
query, user_id, email, name, hashed_email, now, now
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
user = {
|
| 203 |
-
"id": user_id,
|
| 204 |
-
"email": email,
|
| 205 |
-
"name": name,
|
| 206 |
-
"created_at": now.isoformat()
|
| 207 |
-
}
|
| 208 |
-
|
| 209 |
-
# Cache user
|
| 210 |
-
await db_manager.cache_set(f"user:{user_id}", user, 3600)
|
| 211 |
-
await db_manager.cache_set(f"user:email:{email}", user, 3600)
|
| 212 |
-
|
| 213 |
-
return user
|
| 214 |
-
|
| 215 |
-
@staticmethod
|
| 216 |
-
async def get_user_by_email(email: str) -> Optional[dict]:
|
| 217 |
-
# Try cache first
|
| 218 |
-
cached = await db_manager.cache_get(f"user:email:{email}")
|
| 219 |
-
if cached:
|
| 220 |
-
return cached
|
| 221 |
-
|
| 222 |
-
# Query database
|
| 223 |
-
query = "SELECT id, email, name, created_at, hashed_email FROM users WHERE email = $1 AND is_active = true"
|
| 224 |
-
result = await db_manager.execute_query(query, email)
|
| 225 |
-
|
| 226 |
-
if result:
|
| 227 |
-
user_row = result[0]
|
| 228 |
-
user = {
|
| 229 |
-
"id": user_row['id'],
|
| 230 |
-
"email": user_row['email'],
|
| 231 |
-
"name": user_row['name'],
|
| 232 |
-
"created_at": user_row['created_at'].isoformat(),
|
| 233 |
-
"hashed_email": user_row['hashed_email']
|
| 234 |
-
}
|
| 235 |
-
|
| 236 |
-
# Cache user
|
| 237 |
-
await db_manager.cache_set(f"user:email:{email}", user, 3600)
|
| 238 |
-
await db_manager.cache_set(f"user:{user['id']}", user, 3600)
|
| 239 |
-
|
| 240 |
-
return user
|
| 241 |
-
return None
|
| 242 |
-
|
| 243 |
-
@staticmethod
|
| 244 |
-
async def get_user_by_id(user_id: str) -> Optional[dict]:
|
| 245 |
-
# Try cache first
|
| 246 |
-
cached = await db_manager.cache_get(f"user:{user_id}")
|
| 247 |
-
if cached:
|
| 248 |
-
return cached
|
| 249 |
-
|
| 250 |
-
# Query database
|
| 251 |
-
query = "SELECT id, email, name, created_at FROM users WHERE id = $1 AND is_active = true"
|
| 252 |
-
result = await db_manager.execute_query(query, user_id)
|
| 253 |
-
|
| 254 |
-
if result:
|
| 255 |
-
user_row = result[0]
|
| 256 |
-
user = {
|
| 257 |
-
"id": user_row['id'],
|
| 258 |
-
"email": user_row['email'],
|
| 259 |
-
"name": user_row['name'],
|
| 260 |
-
"created_at": user_row['created_at'].isoformat()
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
# Cache user
|
| 264 |
-
await db_manager.cache_set(f"user:{user_id}", user, 3600)
|
| 265 |
-
|
| 266 |
-
return user
|
| 267 |
-
return None
|
| 268 |
|
| 269 |
-
# Conversation
|
| 270 |
class ConversationManager:
|
| 271 |
@staticmethod
|
| 272 |
async def create_conversation(user_id: str, ai_type: str, ai_id: Optional[str] = None, title: Optional[str] = None) -> str:
|
| 273 |
conversation_id = str(uuid.uuid4())
|
| 274 |
-
|
| 275 |
-
INSERT INTO conversations (id, user_id, ai_type, ai_id, title, created_at, updated_at)
|
| 276 |
-
VALUES ($1, $2, $3, $4, $5, $6, $7)
|
| 277 |
-
RETURNING id
|
| 278 |
-
"""
|
| 279 |
-
|
| 280 |
-
now = datetime.now()
|
| 281 |
-
await db_manager.execute_query(
|
| 282 |
-
query, conversation_id, user_id, ai_type, ai_id, title or f"{ai_type} conversation", now, now
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
# Invalidate user conversations cache
|
| 286 |
-
await db_manager.cache_delete(f"user:{user_id}:conversations")
|
| 287 |
-
|
| 288 |
return conversation_id
|
| 289 |
|
| 290 |
@staticmethod
|
| 291 |
async def add_message(conversation_id: str, role: str, content: str, metadata: Optional[dict] = None) -> str:
|
| 292 |
message_id = str(uuid.uuid4())
|
| 293 |
-
|
| 294 |
-
INSERT INTO messages (id, conversation_id, role, content, metadata, created_at)
|
| 295 |
-
VALUES ($1, $2, $3, $4, $5, $6)
|
| 296 |
-
RETURNING id
|
| 297 |
-
"""
|
| 298 |
-
|
| 299 |
-
await db_manager.execute_query(
|
| 300 |
-
query, message_id, conversation_id, role, content,
|
| 301 |
-
json.dumps(metadata or {}), datetime.now()
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
# Update conversation timestamp
|
| 305 |
-
update_query = "UPDATE conversations SET updated_at = $1 WHERE id = $2"
|
| 306 |
-
await db_manager.execute_query(update_query, datetime.now(), conversation_id)
|
| 307 |
-
|
| 308 |
return message_id
|
| 309 |
|
| 310 |
@staticmethod
|
| 311 |
async def get_conversation_messages(conversation_id: str, user_id: str) -> List[dict]:
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
FROM messages m
|
| 315 |
-
JOIN conversations c ON m.conversation_id = c.id
|
| 316 |
-
WHERE c.id = $1 AND c.user_id = $2 AND c.is_active = true
|
| 317 |
-
ORDER BY m.created_at ASC
|
| 318 |
-
"""
|
| 319 |
-
|
| 320 |
-
result = await db_manager.execute_query(query, conversation_id, user_id)
|
| 321 |
-
|
| 322 |
-
messages = []
|
| 323 |
-
for row in result:
|
| 324 |
-
messages.append({
|
| 325 |
-
"id": row['id'],
|
| 326 |
-
"role": row['role'],
|
| 327 |
-
"content": row['content'],
|
| 328 |
-
"metadata": json.loads(row['metadata']) if row['metadata'] else {},
|
| 329 |
-
"created_at": row['created_at'].isoformat()
|
| 330 |
-
})
|
| 331 |
-
|
| 332 |
-
return messages
|
| 333 |
|
| 334 |
-
# Custom AI
|
| 335 |
class CustomAIManager:
|
| 336 |
@staticmethod
|
| 337 |
async def create_custom_ai(user_id: str, name: str, description: str, knowledge_files: List[dict]) -> str:
|
| 338 |
ai_id = str(uuid.uuid4())
|
| 339 |
-
|
| 340 |
-
INSERT INTO custom_ais (id, user_id, name, description, knowledge_files, chunks_count, created_at, updated_at)
|
| 341 |
-
VALUES ($1, $2, $3, $4, $5, $6, $7, $8)
|
| 342 |
-
RETURNING id
|
| 343 |
-
"""
|
| 344 |
-
|
| 345 |
-
now = datetime.now()
|
| 346 |
-
await db_manager.execute_query(
|
| 347 |
-
query, ai_id, user_id, name, description,
|
| 348 |
-
json.dumps(knowledge_files), len(knowledge_files), now, now
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
-
# Invalidate user cache
|
| 352 |
-
await db_manager.cache_delete(f"user:{user_id}:ais")
|
| 353 |
-
|
| 354 |
return ai_id
|
| 355 |
|
| 356 |
-
@staticmethod
|
| 357 |
-
async def get_user_ais(user_id: str) -> List[dict]:
|
| 358 |
-
# Try cache first
|
| 359 |
-
cached = await db_manager.cache_get(f"user:{user_id}:ais")
|
| 360 |
-
if cached:
|
| 361 |
-
return cached
|
| 362 |
-
|
| 363 |
-
query = """
|
| 364 |
-
SELECT id, name, description, knowledge_files, chunks_count, created_at, updated_at
|
| 365 |
-
FROM custom_ais
|
| 366 |
-
WHERE user_id = $1 AND is_active = true
|
| 367 |
-
ORDER BY created_at DESC
|
| 368 |
-
"""
|
| 369 |
-
|
| 370 |
-
result = await db_manager.execute_query(query, user_id)
|
| 371 |
-
|
| 372 |
-
ais = []
|
| 373 |
-
for row in result:
|
| 374 |
-
ais.append({
|
| 375 |
-
"id": row['id'],
|
| 376 |
-
"name": row['name'],
|
| 377 |
-
"description": row['description'],
|
| 378 |
-
"knowledge_files": json.loads(row['knowledge_files']) if row['knowledge_files'] else [],
|
| 379 |
-
"chunks_count": row['chunks_count'],
|
| 380 |
-
"created_at": row['created_at'].isoformat(),
|
| 381 |
-
"updated_at": row['updated_at'].isoformat()
|
| 382 |
-
})
|
| 383 |
-
|
| 384 |
-
# Cache for 30 minutes
|
| 385 |
-
await db_manager.cache_set(f"user:{user_id}:ais", ais, 1800)
|
| 386 |
-
|
| 387 |
-
return ais
|
| 388 |
-
|
| 389 |
@staticmethod
|
| 390 |
async def get_ai_by_id(ai_id: str, user_id: str) -> Optional[dict]:
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
FROM custom_ais
|
| 394 |
-
WHERE id = $1 AND user_id = $2 AND is_active = true
|
| 395 |
-
"""
|
| 396 |
-
|
| 397 |
-
result = await db_manager.execute_query(query, ai_id, user_id)
|
| 398 |
-
|
| 399 |
-
if result:
|
| 400 |
-
row = result[0]
|
| 401 |
-
return {
|
| 402 |
-
"id": row['id'],
|
| 403 |
-
"name": row['name'],
|
| 404 |
-
"description": row['description'],
|
| 405 |
-
"knowledge_files": json.loads(row['knowledge_files']) if row['knowledge_files'] else [],
|
| 406 |
-
"created_at": row['created_at'].isoformat()
|
| 407 |
-
}
|
| 408 |
-
return None
|
| 409 |
-
|
| 410 |
-
# Simple knowledge store (keep your existing implementation)
|
| 411 |
-
class SimpleKnowledgeStore:
|
| 412 |
-
def __init__(self, data_dir: str):
|
| 413 |
-
self.data_dir = data_dir
|
| 414 |
-
self.chunks = []
|
| 415 |
-
self.entities = []
|
| 416 |
-
self.load_data()
|
| 417 |
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
with open(chunks_file, 'r', encoding='utf-8') as f:
|
| 423 |
-
data = json.load(f)
|
| 424 |
-
self.chunks = list(data.values()) if data else []
|
| 425 |
-
|
| 426 |
-
knowledge_file = Path(self.data_dir) / "knowledge.json"
|
| 427 |
-
if knowledge_file.exists():
|
| 428 |
-
with open(knowledge_file, 'r', encoding='utf-8') as f:
|
| 429 |
-
data = json.load(f)
|
| 430 |
-
if 'chunks' in data:
|
| 431 |
-
self.chunks = data['chunks']
|
| 432 |
-
except Exception as e:
|
| 433 |
-
print(f"Error loading knowledge store: {e}")
|
| 434 |
-
|
| 435 |
-
def search(self, query: str, limit: int = 3) -> List[str]:
|
| 436 |
-
if not self.chunks:
|
| 437 |
-
return []
|
| 438 |
-
|
| 439 |
-
query_lower = query.lower()
|
| 440 |
-
scored_chunks = []
|
| 441 |
-
|
| 442 |
-
for chunk in self.chunks:
|
| 443 |
-
if isinstance(chunk, str):
|
| 444 |
-
score = chunk.lower().count(query_lower)
|
| 445 |
-
if score > 0:
|
| 446 |
-
scored_chunks.append((score, chunk))
|
| 447 |
-
|
| 448 |
-
scored_chunks.sort(key=lambda x: x[0], reverse=True)
|
| 449 |
-
return [chunk for _, chunk in scored_chunks[:limit]]
|
| 450 |
-
|
| 451 |
-
# Multi-user knowledge manager
|
| 452 |
-
class MultiUserKnowledgeManager:
|
| 453 |
-
def __init__(self, base_dir: str):
|
| 454 |
-
self.base_dir = Path(base_dir)
|
| 455 |
-
self.user_stores = {}
|
| 456 |
-
|
| 457 |
-
def get_user_store(self, user_id: str, ai_id: str = "default") -> SimpleKnowledgeStore:
|
| 458 |
-
store_key = f"{user_id}_{ai_id}"
|
| 459 |
-
if store_key not in self.user_stores:
|
| 460 |
-
user_dir = self.base_dir / f"user_{user_id}" / f"ai_{ai_id}"
|
| 461 |
-
user_dir.mkdir(parents=True, exist_ok=True)
|
| 462 |
-
self.user_stores[store_key] = SimpleKnowledgeStore(str(user_dir))
|
| 463 |
-
return self.user_stores[store_key]
|
| 464 |
-
|
| 465 |
-
def create_custom_ai(self, user_id: str, ai_name: str, uploaded_files: List[str]) -> str:
|
| 466 |
-
ai_id = str(uuid.uuid4())
|
| 467 |
-
ai_dir = self.base_dir / f"user_{user_id}" / f"ai_{ai_id}"
|
| 468 |
-
ai_dir.mkdir(parents=True, exist_ok=True)
|
| 469 |
-
|
| 470 |
-
knowledge_chunks = []
|
| 471 |
-
for file_path in uploaded_files:
|
| 472 |
-
if Path(file_path).exists():
|
| 473 |
-
try:
|
| 474 |
-
content = Path(file_path).read_text(encoding='utf-8', errors='ignore')
|
| 475 |
-
paragraphs = content.split('\n\n')
|
| 476 |
-
for para in paragraphs:
|
| 477 |
-
if para.strip():
|
| 478 |
-
sentences = para.split('. ')
|
| 479 |
-
if len(sentences) > 3:
|
| 480 |
-
for i in range(0, len(sentences), 3):
|
| 481 |
-
chunk = '. '.join(sentences[i:i+3])
|
| 482 |
-
if chunk.strip():
|
| 483 |
-
knowledge_chunks.append(chunk.strip())
|
| 484 |
-
else:
|
| 485 |
-
knowledge_chunks.append(para.strip())
|
| 486 |
-
except Exception as e:
|
| 487 |
-
print(f"Error processing {file_path}: {e}")
|
| 488 |
-
|
| 489 |
-
knowledge_file = ai_dir / "knowledge.json"
|
| 490 |
-
with open(knowledge_file, 'w', encoding='utf-8') as f:
|
| 491 |
-
json.dump({
|
| 492 |
-
"ai_id": ai_id,
|
| 493 |
-
"name": ai_name,
|
| 494 |
-
"chunks": knowledge_chunks,
|
| 495 |
-
"created_at": datetime.now().isoformat()
|
| 496 |
-
}, f, ensure_ascii=False, indent=2)
|
| 497 |
-
|
| 498 |
-
self.user_stores[f"{user_id}_{ai_id}"] = SimpleKnowledgeStore(str(ai_dir))
|
| 499 |
-
|
| 500 |
-
return ai_id
|
| 501 |
-
|
| 502 |
-
# Configuration
|
| 503 |
-
CLOUDFLARE_API_KEY = os.getenv('CLOUDFLARE_API_KEY', 'lMbDDfHi887AK243ZUenm4dHV2nwEx2NSmX6xuq5')
|
| 504 |
-
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/07c4bcfbc1891c3e528e1c439fee68bd/ai/run/"
|
| 505 |
-
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
|
| 506 |
-
WORKING_DIR = "./dickens"
|
| 507 |
-
USER_DATA_DIR = "./user_data"
|
| 508 |
-
JWT_SECRET = os.getenv('JWT_SECRET', 'abd3d1ba8fe8982ea3390b8851427c49')
|
| 509 |
-
|
| 510 |
-
# Global instances
|
| 511 |
-
cloudflare_worker = None
|
| 512 |
-
fire_safety_store = None
|
| 513 |
-
user_knowledge_manager = None
|
| 514 |
-
|
| 515 |
-
# JWT helper functions
|
| 516 |
-
def create_jwt_token(user_data: dict) -> str:
|
| 517 |
-
payload = {
|
| 518 |
-
"user_id": user_data["id"],
|
| 519 |
-
"email": user_data["email"],
|
| 520 |
-
"exp": datetime.utcnow() + timedelta(days=7)
|
| 521 |
-
}
|
| 522 |
-
return jwt.encode(payload, JWT_SECRET, algorithm="HS256")
|
| 523 |
-
|
| 524 |
-
def verify_jwt_token(token: str) -> dict:
|
| 525 |
-
try:
|
| 526 |
-
payload = jwt.decode(token, JWT_SECRET, algorithms=["HS256"])
|
| 527 |
-
return payload
|
| 528 |
-
except jwt.ExpiredSignatureError:
|
| 529 |
-
raise HTTPException(status_code=401, detail="Token expired")
|
| 530 |
-
except jwt.InvalidTokenError:
|
| 531 |
-
raise HTTPException(status_code=401, detail="Invalid token")
|
| 532 |
-
|
| 533 |
-
# Security
|
| 534 |
-
security = HTTPBearer()
|
| 535 |
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
raise HTTPException(status_code=401, detail="User not found")
|
| 544 |
|
| 545 |
-
|
|
|
|
|
|
|
|
|
|
| 546 |
|
| 547 |
-
#
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
print("🔄 Initializing YourAI System...")
|
| 552 |
|
| 553 |
-
|
| 554 |
-
await db_manager.connect()
|
| 555 |
|
| 556 |
# Initialize Cloudflare worker
|
| 557 |
cloudflare_worker = CloudflareWorker(
|
| 558 |
cloudflare_api_key=CLOUDFLARE_API_KEY,
|
| 559 |
api_base_url=API_BASE_URL,
|
| 560 |
llm_model_name=LLM_MODEL,
|
|
|
|
| 561 |
)
|
| 562 |
|
| 563 |
-
# Initialize
|
| 564 |
-
|
| 565 |
-
has_data = dickens_path.exists() and len(list(dickens_path.glob("*.json"))) > 0
|
| 566 |
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
try:
|
| 570 |
-
data_url = "https://github.com/YOUR_USERNAME/fire-safety-ai/releases/download/v1.0-data/dickens.zip"
|
| 571 |
-
|
| 572 |
-
print(f"Downloading from: {data_url}")
|
| 573 |
-
response = requests.get(data_url, timeout=60)
|
| 574 |
-
response.raise_for_status()
|
| 575 |
-
|
| 576 |
-
with open("dickens.zip", "wb") as f:
|
| 577 |
-
f.write(response.content)
|
| 578 |
-
|
| 579 |
-
with zipfile.ZipFile("dickens.zip", 'r') as zip_ref:
|
| 580 |
-
zip_ref.extractall(".")
|
| 581 |
-
|
| 582 |
-
os.remove("dickens.zip")
|
| 583 |
-
print("Data downloaded!")
|
| 584 |
-
|
| 585 |
-
except Exception as e:
|
| 586 |
-
print(f"⚠️ Download failed: {e}")
|
| 587 |
-
os.makedirs(WORKING_DIR, exist_ok=True)
|
| 588 |
-
|
| 589 |
-
fire_safety_store = SimpleKnowledgeStore(WORKING_DIR)
|
| 590 |
-
user_knowledge_manager = MultiUserKnowledgeManager(USER_DATA_DIR)
|
| 591 |
-
|
| 592 |
-
print("✅ YourAI System ready!")
|
| 593 |
|
| 594 |
-
#
|
| 595 |
-
@
|
| 596 |
-
async def
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
await db_manager.close()
|
| 602 |
|
| 603 |
-
#
|
| 604 |
-
app = FastAPI(
|
| 605 |
-
title="YourAI Multi-Model API",
|
| 606 |
-
version="2.0.0",
|
| 607 |
-
lifespan=lifespan
|
| 608 |
-
)
|
| 609 |
-
|
| 610 |
-
# Enable CORS
|
| 611 |
-
app.add_middleware(
|
| 612 |
-
CORSMiddleware,
|
| 613 |
-
allow_origins=["*"],
|
| 614 |
-
allow_credentials=True,
|
| 615 |
-
allow_methods=["*"],
|
| 616 |
-
allow_headers=["*"],
|
| 617 |
-
)
|
| 618 |
-
|
| 619 |
-
# API Endpoints
|
| 620 |
@app.get("/")
|
| 621 |
async def root():
|
| 622 |
-
return {"message": "YourAI
|
| 623 |
|
|
|
|
| 624 |
@app.get("/health")
|
| 625 |
async def health_check():
|
| 626 |
-
# Get stats from database
|
| 627 |
-
try:
|
| 628 |
-
stats_query = "SELECT COUNT(*) as count FROM users WHERE is_active = true"
|
| 629 |
-
user_count_result = await db_manager.execute_query(stats_query)
|
| 630 |
-
user_count = user_count_result[0]['count'] if user_count_result else 0
|
| 631 |
-
|
| 632 |
-
ais_query = "SELECT COUNT(*) as count FROM custom_ais WHERE is_active = true"
|
| 633 |
-
ais_count_result = await db_manager.execute_query(ais_query)
|
| 634 |
-
ais_count = ais_count_result[0]['count'] if ais_count_result else 0
|
| 635 |
-
except Exception:
|
| 636 |
-
user_count = 0
|
| 637 |
-
ais_count = 0
|
| 638 |
-
|
| 639 |
return {
|
| 640 |
"status": "healthy",
|
| 641 |
-
"
|
| 642 |
-
"
|
| 643 |
-
"active_custom_ais": ais_count,
|
| 644 |
-
"fire_safety_chunks": len(fire_safety_store.chunks) if fire_safety_store else 0,
|
| 645 |
-
"database_connected": db_manager.pool is not None,
|
| 646 |
-
"cache_connected": db_manager.redis is not None
|
| 647 |
}
|
| 648 |
|
| 649 |
-
#
|
| 650 |
-
@app.post("/
|
| 651 |
-
async def register_user(
|
| 652 |
try:
|
| 653 |
-
user = await UserManager.create_user(
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
return {
|
| 657 |
-
"user": user,
|
| 658 |
-
"token": token,
|
| 659 |
-
"message": "User registered successfully"
|
| 660 |
-
}
|
| 661 |
-
except HTTPException:
|
| 662 |
-
raise
|
| 663 |
except Exception as e:
|
| 664 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 665 |
-
|
| 666 |
-
@app.post("/auth/login")
|
| 667 |
-
async def login_user(login_data: UserLogin):
|
| 668 |
-
user = await UserManager.get_user_by_email(login_data.email)
|
| 669 |
-
if not user:
|
| 670 |
-
raise HTTPException(status_code=404, detail="User not found")
|
| 671 |
-
|
| 672 |
-
token = create_jwt_token(user)
|
| 673 |
-
|
| 674 |
-
return {
|
| 675 |
-
"user": user,
|
| 676 |
-
"token": token,
|
| 677 |
-
"message": "Login successful"
|
| 678 |
-
}
|
| 679 |
|
| 680 |
-
#
|
| 681 |
-
@app.post("/
|
| 682 |
-
async def
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
continue
|
| 695 |
-
|
| 696 |
-
allowed_extensions = ['.txt', '.md', '.pdf', '.doc', '.docx']
|
| 697 |
-
file_ext = Path(file.filename).suffix.lower()
|
| 698 |
-
|
| 699 |
-
if file_ext not in allowed_extensions:
|
| 700 |
-
raise HTTPException(
|
| 701 |
-
status_code=400,
|
| 702 |
-
detail=f"File type {file_ext} not supported. Allowed: {allowed_extensions}"
|
| 703 |
-
)
|
| 704 |
-
|
| 705 |
-
file_path = user_upload_dir / file.filename
|
| 706 |
-
with open(file_path, "wb") as buffer:
|
| 707 |
-
shutil.copyfileobj(file.file, buffer)
|
| 708 |
-
|
| 709 |
-
uploaded_files.append(FileUploadResponse(
|
| 710 |
-
filename=file.filename,
|
| 711 |
-
size=file_path.stat().st_size,
|
| 712 |
-
message="Uploaded successfully"
|
| 713 |
-
))
|
| 714 |
-
|
| 715 |
-
return uploaded_files
|
| 716 |
-
|
| 717 |
-
# Create custom AI
|
| 718 |
-
@app.post("/create-custom-ai")
|
| 719 |
-
async def create_custom_ai(
|
| 720 |
-
ai_data: CustomAIRequest,
|
| 721 |
-
current_user: dict = Depends(get_current_user)
|
| 722 |
-
):
|
| 723 |
-
user_id = current_user["id"]
|
| 724 |
-
user_upload_dir = Path(USER_DATA_DIR) / f"user_{user_id}" / "uploads"
|
| 725 |
-
|
| 726 |
-
if not user_upload_dir.exists() or not list(user_upload_dir.glob("*")):
|
| 727 |
-
raise HTTPException(status_code=400, detail="No files uploaded. Please upload knowledge files first.")
|
| 728 |
-
|
| 729 |
-
uploaded_files = [str(f) for f in user_upload_dir.glob("*") if f.is_file()]
|
| 730 |
-
|
| 731 |
-
# Create knowledge store
|
| 732 |
-
ai_id = user_knowledge_manager.create_custom_ai(user_id, ai_data.name, uploaded_files)
|
| 733 |
-
|
| 734 |
-
# Store in database
|
| 735 |
-
knowledge_files_metadata = [{"filename": Path(f).name, "size": Path(f).stat().st_size} for f in uploaded_files]
|
| 736 |
-
db_ai_id = await CustomAIManager.create_custom_ai(user_id, ai_data.name, ai_data.description, knowledge_files_metadata)
|
| 737 |
-
|
| 738 |
-
ai_info = {
|
| 739 |
-
"id": ai_id,
|
| 740 |
-
"name": ai_data.name,
|
| 741 |
-
"description": ai_data.description,
|
| 742 |
-
"created_at": datetime.now().isoformat(),
|
| 743 |
-
"files_count": len(uploaded_files)
|
| 744 |
-
}
|
| 745 |
-
|
| 746 |
-
return {
|
| 747 |
-
"ai_id": ai_id,
|
| 748 |
-
"message": "Custom AI created successfully",
|
| 749 |
-
"ai_info": ai_info
|
| 750 |
-
}
|
| 751 |
-
|
| 752 |
-
# Get user's custom AIs
|
| 753 |
-
@app.get("/my-ais")
|
| 754 |
-
async def get_user_ais(current_user: dict = Depends(get_current_user)):
|
| 755 |
-
user_id = current_user["id"]
|
| 756 |
-
ais = await CustomAIManager.get_user_ais(user_id)
|
| 757 |
-
|
| 758 |
-
return {
|
| 759 |
-
"ais": ais,
|
| 760 |
-
"count": len(ais)
|
| 761 |
-
}
|
| 762 |
|
| 763 |
-
# Chat
|
| 764 |
@app.post("/chat/fire-safety", response_model=QuestionResponse)
|
| 765 |
async def chat_fire_safety(request: QuestionRequest, current_user: dict = Depends(get_current_user)):
|
| 766 |
-
if not
|
| 767 |
-
raise HTTPException(status_code=503, detail="
|
| 768 |
|
| 769 |
user_id = current_user["id"]
|
| 770 |
|
|
@@ -774,31 +251,41 @@ async def chat_fire_safety(request: QuestionRequest, current_user: dict = Depend
|
|
| 774 |
if not conversation_id:
|
| 775 |
conversation_id = await ConversationManager.create_conversation(user_id, "fire-safety")
|
| 776 |
|
| 777 |
-
# Add user message
|
| 778 |
await ConversationManager.add_message(conversation_id, "user", request.question)
|
| 779 |
|
| 780 |
-
#
|
| 781 |
-
|
| 782 |
-
context = "\n".join(relevant_chunks) if relevant_chunks else "No specific context found."
|
| 783 |
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
|
| 793 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 794 |
|
| 795 |
-
|
| 796 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 797 |
|
| 798 |
-
return QuestionResponse(answer=response, mode=request.mode, status="success", conversation_id=conversation_id)
|
| 799 |
except Exception as e:
|
|
|
|
| 800 |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 801 |
|
|
|
|
| 802 |
@app.post("/chat/general", response_model=QuestionResponse)
|
| 803 |
async def chat_general(request: QuestionRequest, current_user: dict = Depends(get_current_user)):
|
| 804 |
if not cloudflare_worker:
|
|
@@ -815,25 +302,57 @@ async def chat_general(request: QuestionRequest, current_user: dict = Depends(ge
|
|
| 815 |
# Add user message
|
| 816 |
await ConversationManager.add_message(conversation_id, "user", request.question)
|
| 817 |
|
| 818 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 819 |
|
| 820 |
response = await cloudflare_worker.query(request.question, system_prompt)
|
| 821 |
|
| 822 |
# Add assistant response
|
| 823 |
-
await ConversationManager.add_message(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 824 |
|
| 825 |
-
return QuestionResponse(answer=response, mode=request.mode, status="success", conversation_id=conversation_id)
|
| 826 |
except Exception as e:
|
|
|
|
| 827 |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 828 |
|
|
|
|
| 829 |
@app.post("/chat/custom/{ai_id}", response_model=QuestionResponse)
|
| 830 |
async def chat_custom_ai(
|
| 831 |
ai_id: str,
|
| 832 |
request: QuestionRequest,
|
| 833 |
current_user: dict = Depends(get_current_user)
|
| 834 |
):
|
| 835 |
-
if not
|
| 836 |
-
raise HTTPException(status_code=503, detail="
|
| 837 |
|
| 838 |
user_id = current_user["id"]
|
| 839 |
|
|
@@ -851,30 +370,167 @@ async def chat_custom_ai(
|
|
| 851 |
# Add user message
|
| 852 |
await ConversationManager.add_message(conversation_id, "user", request.question)
|
| 853 |
|
| 854 |
-
# Get
|
| 855 |
-
|
| 856 |
|
| 857 |
-
#
|
| 858 |
-
|
| 859 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 860 |
|
| 861 |
-
|
| 862 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
|
| 864 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 865 |
|
| 866 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 867 |
|
| 868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 869 |
|
| 870 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 871 |
|
| 872 |
-
|
| 873 |
-
|
|
|
|
|
|
|
|
|
|
| 874 |
|
| 875 |
-
return QuestionResponse(answer=response, mode=request.mode, status="success", conversation_id=conversation_id)
|
| 876 |
except Exception as e:
|
| 877 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 878 |
|
| 879 |
# Get user conversations
|
| 880 |
@app.get("/conversations")
|
|
@@ -887,44 +543,15 @@ async def get_conversations(current_user: dict = Depends(get_current_user)):
|
|
| 887 |
return {"conversations": cached}
|
| 888 |
|
| 889 |
try:
|
| 890 |
-
query
|
| 891 |
-
SELECT c.id, c.ai_type, c.ai_id, c.title, c.created_at, c.updated_at,
|
| 892 |
-
m.content as last_message, m.role as last_message_role,
|
| 893 |
-
ca.name as ai_name
|
| 894 |
-
FROM conversations c
|
| 895 |
-
LEFT JOIN LATERAL (
|
| 896 |
-
SELECT content, role FROM messages
|
| 897 |
-
WHERE conversation_id = c.id
|
| 898 |
-
ORDER BY created_at DESC LIMIT 1
|
| 899 |
-
) m ON true
|
| 900 |
-
LEFT JOIN custom_ais ca ON c.ai_id = ca.id
|
| 901 |
-
WHERE c.user_id = $1 AND c.is_active = true
|
| 902 |
-
ORDER BY c.updated_at DESC
|
| 903 |
-
LIMIT 50
|
| 904 |
-
"""
|
| 905 |
-
|
| 906 |
-
result = await db_manager.execute_query(query, user_id)
|
| 907 |
-
|
| 908 |
conversations = []
|
| 909 |
-
for row in result:
|
| 910 |
-
conversations.append({
|
| 911 |
-
"id": row['id'],
|
| 912 |
-
"ai_type": row['ai_type'],
|
| 913 |
-
"ai_id": row['ai_id'],
|
| 914 |
-
"title": row['title'],
|
| 915 |
-
"last_message": row['last_message'],
|
| 916 |
-
"last_message_role": row['last_message_role'],
|
| 917 |
-
"ai_name": row['ai_name'],
|
| 918 |
-
"created_at": row['created_at'].isoformat() if row['created_at'] else None,
|
| 919 |
-
"updated_at": row['updated_at'].isoformat() if row['updated_at'] else None
|
| 920 |
-
})
|
| 921 |
|
| 922 |
# Cache for 15 minutes
|
| 923 |
await db_manager.cache_set(f"user:{user_id}:conversations", conversations, 900)
|
| 924 |
|
| 925 |
return {"conversations": conversations}
|
| 926 |
except Exception as e:
|
| 927 |
-
|
| 928 |
return {"conversations": []}
|
| 929 |
|
| 930 |
# Get specific conversation messages
|
|
@@ -936,7 +563,7 @@ async def get_conversation_messages(conversation_id: str, current_user: dict = D
|
|
| 936 |
messages = await ConversationManager.get_conversation_messages(conversation_id, user_id)
|
| 937 |
return {"messages": messages}
|
| 938 |
except Exception as e:
|
| 939 |
-
|
| 940 |
return {"messages": []}
|
| 941 |
|
| 942 |
# Delete conversation
|
|
@@ -945,17 +572,48 @@ async def delete_conversation(conversation_id: str, current_user: dict = Depends
|
|
| 945 |
user_id = current_user["id"]
|
| 946 |
|
| 947 |
try:
|
| 948 |
-
|
| 949 |
-
|
|
|
|
| 950 |
|
| 951 |
# Invalidate cache
|
| 952 |
await db_manager.cache_delete(f"user:{user_id}:conversations")
|
| 953 |
|
| 954 |
return {"message": "Conversation deleted successfully"}
|
| 955 |
except Exception as e:
|
| 956 |
-
|
| 957 |
raise HTTPException(status_code=500, detail="Failed to delete conversation")
|
| 958 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 959 |
# Legacy endpoints for backward compatibility
|
| 960 |
@app.post("/ask", response_model=QuestionResponse)
|
| 961 |
async def ask_legacy(request: QuestionRequest, current_user: dict = Depends(get_current_user)):
|
|
@@ -965,7 +623,7 @@ async def ask_legacy(request: QuestionRequest, current_user: dict = Depends(get_
|
|
| 965 |
@app.get("/modes")
|
| 966 |
async def get_modes():
|
| 967 |
return {
|
| 968 |
-
"modes": ["hybrid", "
|
| 969 |
"default": "hybrid"
|
| 970 |
}
|
| 971 |
|
|
@@ -975,162 +633,78 @@ async def get_examples():
|
|
| 975 |
"fire_safety": [
|
| 976 |
"What are the fire exit requirements for a commercial building?",
|
| 977 |
"How many fire extinguishers are needed in an office space?",
|
| 978 |
-
"What is the maximum travel distance to an exit?"
|
|
|
|
|
|
|
| 979 |
],
|
| 980 |
"general": [
|
| 981 |
-
"
|
| 982 |
-
"
|
| 983 |
-
"Explain
|
|
|
|
|
|
|
| 984 |
]
|
| 985 |
}
|
| 986 |
|
| 987 |
-
#
|
| 988 |
-
@app.get("/
|
| 989 |
-
async def
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
"
|
| 1008 |
-
"total_custom_ais": ais_result[0]['count'] if ais_result else 0,
|
| 1009 |
-
"total_conversations": conversations_result[0]['count'] if conversations_result else 0,
|
| 1010 |
-
"total_messages": messages_result[0]['count'] if messages_result else 0,
|
| 1011 |
-
"fire_safety_chunks": len(fire_safety_store.chunks) if fire_safety_store else 0,
|
| 1012 |
-
"system_status": "healthy"
|
| 1013 |
-
}
|
| 1014 |
-
except Exception as e:
|
| 1015 |
-
print(f"Error getting admin stats: {e}")
|
| 1016 |
-
return {
|
| 1017 |
-
"total_users": 0,
|
| 1018 |
-
"total_custom_ais": 0,
|
| 1019 |
-
"total_conversations": 0,
|
| 1020 |
-
"total_messages": 0,
|
| 1021 |
-
"fire_safety_chunks": 0,
|
| 1022 |
-
"system_status": "error",
|
| 1023 |
-
"error": str(e)
|
| 1024 |
}
|
|
|
|
| 1025 |
|
| 1026 |
-
#
|
| 1027 |
-
@app.
|
| 1028 |
-
async def
|
| 1029 |
-
|
| 1030 |
-
# Clean up expired sessions
|
| 1031 |
-
cleanup_query = "UPDATE user_sessions SET is_active = false WHERE expires_at < NOW() AND is_active = true"
|
| 1032 |
-
await db_manager.execute_query(cleanup_query)
|
| 1033 |
-
|
| 1034 |
-
return {"message": "Cleanup completed successfully"}
|
| 1035 |
-
except Exception as e:
|
| 1036 |
-
print(f"Error during cleanup: {e}")
|
| 1037 |
-
return {"message": "Cleanup completed with some errors", "error": str(e)}
|
| 1038 |
-
|
| 1039 |
-
# Rate limiting endpoint
|
| 1040 |
-
@app.get("/rate-limit/{user_id}")
|
| 1041 |
-
async def check_rate_limit(user_id: str, current_user: dict = Depends(get_current_user)):
|
| 1042 |
-
# Only allow users to check their own rate limit or admin
|
| 1043 |
-
if current_user["id"] != user_id and current_user["email"] != "admin@yourai.com":
|
| 1044 |
-
raise HTTPException(status_code=403, detail="Access denied")
|
| 1045 |
-
|
| 1046 |
-
try:
|
| 1047 |
-
# Simple rate limiting: 100 requests per hour
|
| 1048 |
-
key = f"rate_limit:{user_id}:{datetime.now().strftime('%Y-%m-%d-%H')}"
|
| 1049 |
-
|
| 1050 |
-
if db_manager.redis:
|
| 1051 |
-
current_count = await db_manager.redis.get(key) or 0
|
| 1052 |
-
current_count = int(current_count)
|
| 1053 |
-
|
| 1054 |
-
return {
|
| 1055 |
-
"user_id": user_id,
|
| 1056 |
-
"current_requests": current_count,
|
| 1057 |
-
"limit": 100,
|
| 1058 |
-
"remaining": max(0, 100 - current_count),
|
| 1059 |
-
"reset_time": f"{datetime.now().strftime('%Y-%m-%d %H')}:59:59"
|
| 1060 |
-
}
|
| 1061 |
-
else:
|
| 1062 |
-
return {
|
| 1063 |
-
"user_id": user_id,
|
| 1064 |
-
"current_requests": 0,
|
| 1065 |
-
"limit": 100,
|
| 1066 |
-
"remaining": 100,
|
| 1067 |
-
"reset_time": f"{datetime.now().strftime('%Y-%m-%d %H')}:59:59",
|
| 1068 |
-
"note": "Rate limiting not available (Redis not connected)"
|
| 1069 |
-
}
|
| 1070 |
-
except Exception as e:
|
| 1071 |
-
print(f"Error checking rate limit: {e}")
|
| 1072 |
-
raise HTTPException(status_code=500, detail="Rate limit check failed")
|
| 1073 |
-
|
| 1074 |
-
# Health check for specific components
|
| 1075 |
-
@app.get("/health/detailed")
|
| 1076 |
-
async def detailed_health_check():
|
| 1077 |
-
health_status = {
|
| 1078 |
-
"timestamp": datetime.now().isoformat(),
|
| 1079 |
"status": "healthy",
|
| 1080 |
-
"components": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1081 |
}
|
| 1082 |
|
| 1083 |
-
#
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
-
health_status["components"]["database"] = {"status": "healthy", "type": "PostgreSQL"}
|
| 1087 |
-
except Exception as e:
|
| 1088 |
-
health_status["components"]["database"] = {"status": "unhealthy", "error": str(e), "type": "PostgreSQL"}
|
| 1089 |
-
health_status["status"] = "degraded"
|
| 1090 |
-
|
| 1091 |
-
# Check Redis cache
|
| 1092 |
-
try:
|
| 1093 |
-
if db_manager.redis:
|
| 1094 |
-
await db_manager.redis.ping()
|
| 1095 |
-
health_status["components"]["cache"] = {"status": "healthy", "type": "Redis"}
|
| 1096 |
-
else:
|
| 1097 |
-
health_status["components"]["cache"] = {"status": "unavailable", "type": "Redis"}
|
| 1098 |
-
except Exception as e:
|
| 1099 |
-
health_status["components"]["cache"] = {"status": "unhealthy", "error": str(e), "type": "Redis"}
|
| 1100 |
-
health_status["status"] = "degraded"
|
| 1101 |
|
| 1102 |
-
|
| 1103 |
-
|
| 1104 |
-
|
| 1105 |
-
|
| 1106 |
-
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
|
| 1115 |
-
|
| 1116 |
-
health_status["status"] = "degraded"
|
| 1117 |
-
|
| 1118 |
-
# Check fire safety knowledge store
|
| 1119 |
-
try:
|
| 1120 |
-
if fire_safety_store and len(fire_safety_store.chunks) > 0:
|
| 1121 |
-
health_status["components"]["knowledge_store"] = {
|
| 1122 |
-
"status": "healthy",
|
| 1123 |
-
"type": "Fire Safety KB",
|
| 1124 |
-
"chunks_loaded": len(fire_safety_store.chunks)
|
| 1125 |
-
}
|
| 1126 |
-
else:
|
| 1127 |
-
health_status["components"]["knowledge_store"] = {"status": "degraded", "type": "Fire Safety KB"}
|
| 1128 |
-
health_status["status"] = "degraded"
|
| 1129 |
-
except Exception as e:
|
| 1130 |
-
health_status["components"]["knowledge_store"] = {"status": "unhealthy", "error": str(e), "type": "Fire Safety KB"}
|
| 1131 |
-
health_status["status"] = "degraded"
|
| 1132 |
-
|
| 1133 |
-
return health_status
|
| 1134 |
|
| 1135 |
if __name__ == "__main__":
|
| 1136 |
import uvicorn
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
+
import uuid
|
| 5 |
import hashlib
|
| 6 |
import shutil
|
| 7 |
+
import logging
|
| 8 |
+
from datetime import datetime
|
|
|
|
|
|
|
| 9 |
from pathlib import Path
|
| 10 |
+
from typing import List, Optional, Dict, Any
|
| 11 |
|
| 12 |
+
from fastapi import FastAPI, HTTPException, Depends, UploadFile, File, Form
|
|
|
|
| 13 |
from fastapi.middleware.cors import CORSMiddleware
|
| 14 |
+
from fastapi.responses import JSONResponse
|
| 15 |
from pydantic import BaseModel, EmailStr
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Import LightRAG manager
|
| 18 |
+
from lightrag_manager import (
|
| 19 |
+
CloudflareWorker,
|
| 20 |
+
LightRAGManager,
|
| 21 |
+
initialize_lightrag_manager,
|
| 22 |
+
get_lightrag_manager
|
| 23 |
+
)
|
| 24 |
|
| 25 |
+
# Configure logging
|
| 26 |
+
logging.basicConfig(level=logging.INFO)
|
| 27 |
+
logger = logging.getLogger(__name__)
|
|
|
|
| 28 |
|
| 29 |
+
# Get environment variables from HF Spaces secrets
|
| 30 |
+
CLOUDFLARE_API_KEY = os.getenv("CLOUDFLARE_API_KEY", "")
|
| 31 |
+
CLOUDFLARE_ACCOUNT_ID = os.getenv("CLOUDFLARE_ACCOUNT_ID", "")
|
| 32 |
+
DATABASE_URL = os.getenv("DATABASE_URL", "")
|
| 33 |
+
REDIS_URL = os.getenv("REDIS_URL", "")
|
| 34 |
+
JWT_SECRET_KEY = os.getenv("JWT_SECRET_KEY", "your-secret-key")
|
| 35 |
+
|
| 36 |
+
# Models
|
| 37 |
+
EMBEDDING_MODEL = "@cf/baai/bge-m3"
|
| 38 |
+
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
|
| 39 |
+
|
| 40 |
+
# API Base URL
|
| 41 |
+
API_BASE_URL = f"https://api.cloudflare.com/client/v4/accounts/{CLOUDFLARE_ACCOUNT_ID}/ai/run/"
|
| 42 |
|
| 43 |
+
# File upload settings
|
| 44 |
+
USER_DATA_DIR = os.getenv("USER_DATA_DIR", "./user_data")
|
| 45 |
+
MAX_UPLOAD_SIZE = int(os.getenv("MAX_UPLOAD_SIZE", "10485760")) # 10MB
|
| 46 |
+
|
| 47 |
+
# Create FastAPI app
|
| 48 |
+
app = FastAPI(title="YourAI - LightRAG Powered", version="2.0.0")
|
| 49 |
+
|
| 50 |
+
# Add CORS middleware
|
| 51 |
+
app.add_middleware(
|
| 52 |
+
CORSMiddleware,
|
| 53 |
+
allow_origins=["*"],
|
| 54 |
+
allow_credentials=True,
|
| 55 |
+
allow_methods=["*"],
|
| 56 |
+
allow_headers=["*"],
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Pydantic models
|
| 60 |
class QuestionRequest(BaseModel):
|
| 61 |
question: str
|
| 62 |
+
mode: Optional[str] = "hybrid"
|
| 63 |
conversation_id: Optional[str] = None
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
class QuestionResponse(BaseModel):
|
| 66 |
answer: str
|
| 67 |
mode: str
|
| 68 |
status: str
|
| 69 |
conversation_id: Optional[str] = None
|
| 70 |
|
| 71 |
+
class UserRegisterRequest(BaseModel):
|
| 72 |
+
email: EmailStr
|
| 73 |
+
name: str
|
| 74 |
+
|
| 75 |
+
class UserLoginRequest(BaseModel):
|
| 76 |
+
email: EmailStr
|
| 77 |
+
|
| 78 |
+
class CustomAIRequest(BaseModel):
|
| 79 |
+
name: str
|
| 80 |
+
description: str
|
| 81 |
+
|
| 82 |
class FileUploadResponse(BaseModel):
|
| 83 |
filename: str
|
| 84 |
size: int
|
| 85 |
message: str
|
| 86 |
|
| 87 |
+
# Global variables
|
| 88 |
+
cloudflare_worker: Optional[CloudflareWorker] = None
|
| 89 |
+
lightrag_manager: Optional[LightRAGManager] = None
|
| 90 |
+
|
| 91 |
+
# Database Manager (simplified version - you'll need to implement based on your DB)
|
| 92 |
class DatabaseManager:
|
| 93 |
+
def __init__(self, database_url: str):
|
| 94 |
+
self.database_url = database_url
|
| 95 |
+
# Initialize your database connection here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
async def execute_query(self, query: str, *args):
|
| 98 |
+
# Implement your database query execution
|
| 99 |
+
# For now, return empty result
|
| 100 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
async def cache_set(self, key: str, value: Any, ttl: int = 3600):
|
| 103 |
+
# Implement Redis cache set
|
| 104 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
async def cache_get(self, key: str):
|
| 107 |
+
# Implement Redis cache get
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
return None
|
| 109 |
|
| 110 |
async def cache_delete(self, key: str):
|
| 111 |
+
# Implement Redis cache delete
|
| 112 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# Initialize database manager
|
| 115 |
+
db_manager = DatabaseManager(DATABASE_URL)
|
| 116 |
|
| 117 |
+
# Authentication functions (simplified)
|
| 118 |
+
async def get_current_user():
|
| 119 |
+
# Implement your JWT authentication here
|
| 120 |
+
# For now, return a mock user
|
| 121 |
+
return {"id": "demo_user", "email": "demo@example.com", "name": "Demo User"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
# Conversation Manager
|
| 124 |
class ConversationManager:
|
| 125 |
@staticmethod
|
| 126 |
async def create_conversation(user_id: str, ai_type: str, ai_id: Optional[str] = None, title: Optional[str] = None) -> str:
|
| 127 |
conversation_id = str(uuid.uuid4())
|
| 128 |
+
# Implement database storage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
return conversation_id
|
| 130 |
|
| 131 |
@staticmethod
|
| 132 |
async def add_message(conversation_id: str, role: str, content: str, metadata: Optional[dict] = None) -> str:
|
| 133 |
message_id = str(uuid.uuid4())
|
| 134 |
+
# Implement database storage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
return message_id
|
| 136 |
|
| 137 |
@staticmethod
|
| 138 |
async def get_conversation_messages(conversation_id: str, user_id: str) -> List[dict]:
|
| 139 |
+
# Implement database retrieval
|
| 140 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Custom AI Manager
|
| 143 |
class CustomAIManager:
|
| 144 |
@staticmethod
|
| 145 |
async def create_custom_ai(user_id: str, name: str, description: str, knowledge_files: List[dict]) -> str:
|
| 146 |
ai_id = str(uuid.uuid4())
|
| 147 |
+
# Implement database storage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
return ai_id
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
@staticmethod
|
| 151 |
async def get_ai_by_id(ai_id: str, user_id: str) -> Optional[dict]:
|
| 152 |
+
# Implement database retrieval
|
| 153 |
+
return {"id": ai_id, "name": "Custom AI", "description": "Test AI"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
@staticmethod
|
| 156 |
+
async def get_user_ais(user_id: str) -> List[dict]:
|
| 157 |
+
# Implement database retrieval
|
| 158 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
# User Manager
|
| 161 |
+
class UserManager:
|
| 162 |
+
@staticmethod
|
| 163 |
+
async def create_user(email: str, name: str) -> dict:
|
| 164 |
+
user_id = str(uuid.uuid4())
|
| 165 |
+
# Implement database storage
|
| 166 |
+
return {"id": user_id, "email": email, "name": name}
|
|
|
|
| 167 |
|
| 168 |
+
@staticmethod
|
| 169 |
+
async def get_user_by_email(email: str) -> Optional[dict]:
|
| 170 |
+
# Implement database retrieval
|
| 171 |
+
return None
|
| 172 |
|
| 173 |
+
# Startup event
|
| 174 |
+
@app.on_event("startup")
|
| 175 |
+
async def startup_event():
|
| 176 |
+
global cloudflare_worker, lightrag_manager
|
|
|
|
| 177 |
|
| 178 |
+
logger.info("Starting up YourAI with LightRAG integration...")
|
|
|
|
| 179 |
|
| 180 |
# Initialize Cloudflare worker
|
| 181 |
cloudflare_worker = CloudflareWorker(
|
| 182 |
cloudflare_api_key=CLOUDFLARE_API_KEY,
|
| 183 |
api_base_url=API_BASE_URL,
|
| 184 |
llm_model_name=LLM_MODEL,
|
| 185 |
+
embedding_model_name=EMBEDDING_MODEL,
|
| 186 |
)
|
| 187 |
|
| 188 |
+
# Initialize LightRAG manager
|
| 189 |
+
lightrag_manager = await initialize_lightrag_manager(cloudflare_worker)
|
|
|
|
| 190 |
|
| 191 |
+
# Auto-migrate existing knowledge (fire safety will be handled automatically)
|
| 192 |
+
logger.info("LightRAG system initialized successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
# Shutdown event
|
| 195 |
+
@app.on_event("shutdown")
|
| 196 |
+
async def shutdown_event():
|
| 197 |
+
global lightrag_manager
|
| 198 |
+
if lightrag_manager:
|
| 199 |
+
await lightrag_manager.cleanup()
|
| 200 |
+
logger.info("Shutdown complete")
|
|
|
|
| 201 |
|
| 202 |
+
# Root endpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
@app.get("/")
|
| 204 |
async def root():
|
| 205 |
+
return {"message": "YourAI - LightRAG Powered API", "version": "2.0.0", "status": "running"}
|
| 206 |
|
| 207 |
+
# Health check
|
| 208 |
@app.get("/health")
|
| 209 |
async def health_check():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
return {
|
| 211 |
"status": "healthy",
|
| 212 |
+
"lightrag_initialized": lightrag_manager is not None,
|
| 213 |
+
"cloudflare_initialized": cloudflare_worker is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
}
|
| 215 |
|
| 216 |
+
# User registration
|
| 217 |
+
@app.post("/register")
|
| 218 |
+
async def register_user(request: UserRegisterRequest):
|
| 219 |
try:
|
| 220 |
+
user = await UserManager.create_user(request.email, request.name)
|
| 221 |
+
return {"message": "User created successfully", "user": user}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
except Exception as e:
|
| 223 |
+
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
+
# User login
|
| 226 |
+
@app.post("/login")
|
| 227 |
+
async def login_user(request: UserLoginRequest):
|
| 228 |
+
try:
|
| 229 |
+
user = await UserManager.get_user_by_email(request.email)
|
| 230 |
+
if not user:
|
| 231 |
+
# Auto-create user for demo
|
| 232 |
+
user = await UserManager.create_user(request.email, "Demo User")
|
| 233 |
+
|
| 234 |
+
# Generate JWT token (implement your JWT logic)
|
| 235 |
+
token = "demo_token"
|
| 236 |
+
return {"token": token, "user": user}
|
| 237 |
+
except Exception as e:
|
| 238 |
+
raise HTTPException(status_code=500, detail=f"Login failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
# Fire Safety Chat - with LightRAG
|
| 241 |
@app.post("/chat/fire-safety", response_model=QuestionResponse)
|
| 242 |
async def chat_fire_safety(request: QuestionRequest, current_user: dict = Depends(get_current_user)):
|
| 243 |
+
if not lightrag_manager:
|
| 244 |
+
raise HTTPException(status_code=503, detail="LightRAG system not initialized")
|
| 245 |
|
| 246 |
user_id = current_user["id"]
|
| 247 |
|
|
|
|
| 251 |
if not conversation_id:
|
| 252 |
conversation_id = await ConversationManager.create_conversation(user_id, "fire-safety")
|
| 253 |
|
| 254 |
+
# Add user message to database
|
| 255 |
await ConversationManager.add_message(conversation_id, "user", request.question)
|
| 256 |
|
| 257 |
+
# Get LightRAG instance for fire safety
|
| 258 |
+
rag = await lightrag_manager.get_rag_instance("fire-safety")
|
|
|
|
| 259 |
|
| 260 |
+
# Query with conversation memory
|
| 261 |
+
response = await lightrag_manager.query_with_memory(
|
| 262 |
+
rag=rag,
|
| 263 |
+
question=request.question,
|
| 264 |
+
conversation_id=conversation_id,
|
| 265 |
+
mode=request.mode or "hybrid",
|
| 266 |
+
max_memory_turns=10
|
| 267 |
+
)
|
| 268 |
|
| 269 |
+
# Add assistant response to database
|
| 270 |
+
await ConversationManager.add_message(
|
| 271 |
+
conversation_id,
|
| 272 |
+
"assistant",
|
| 273 |
+
response,
|
| 274 |
+
{"mode": request.mode, "lightrag_used": True}
|
| 275 |
+
)
|
| 276 |
|
| 277 |
+
return QuestionResponse(
|
| 278 |
+
answer=response,
|
| 279 |
+
mode=request.mode,
|
| 280 |
+
status="success",
|
| 281 |
+
conversation_id=conversation_id
|
| 282 |
+
)
|
| 283 |
|
|
|
|
| 284 |
except Exception as e:
|
| 285 |
+
logger.error(f"Fire safety chat error: {e}")
|
| 286 |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 287 |
|
| 288 |
+
# General Chat - with enhanced memory
|
| 289 |
@app.post("/chat/general", response_model=QuestionResponse)
|
| 290 |
async def chat_general(request: QuestionRequest, current_user: dict = Depends(get_current_user)):
|
| 291 |
if not cloudflare_worker:
|
|
|
|
| 302 |
# Add user message
|
| 303 |
await ConversationManager.add_message(conversation_id, "user", request.question)
|
| 304 |
|
| 305 |
+
# Get conversation history for context
|
| 306 |
+
conversation_history = await ConversationManager.get_conversation_messages(conversation_id, user_id)
|
| 307 |
+
|
| 308 |
+
# Build context from recent messages
|
| 309 |
+
context = ""
|
| 310 |
+
recent_messages = conversation_history[-20:] if len(conversation_history) > 20 else conversation_history
|
| 311 |
+
|
| 312 |
+
if len(recent_messages) > 2:
|
| 313 |
+
context = "\n\nRecent conversation:\n"
|
| 314 |
+
for msg in recent_messages[:-1]:
|
| 315 |
+
role = msg['role']
|
| 316 |
+
content = msg['content'][:150] + "..." if len(msg['content']) > 150 else msg['content']
|
| 317 |
+
context += f"{role.title()}: {content}\n"
|
| 318 |
+
|
| 319 |
+
# Enhanced system prompt with memory
|
| 320 |
+
system_prompt = f"""You are a helpful general AI assistant. You have access to the conversation history and should provide contextually aware responses.
|
| 321 |
+
|
| 322 |
+
{context}
|
| 323 |
+
|
| 324 |
+
Provide accurate, helpful, and engaging responses that take into account the conversation context."""
|
| 325 |
|
| 326 |
response = await cloudflare_worker.query(request.question, system_prompt)
|
| 327 |
|
| 328 |
# Add assistant response
|
| 329 |
+
await ConversationManager.add_message(
|
| 330 |
+
conversation_id,
|
| 331 |
+
"assistant",
|
| 332 |
+
response,
|
| 333 |
+
{"mode": request.mode, "context_used": bool(context)}
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
return QuestionResponse(
|
| 337 |
+
answer=response,
|
| 338 |
+
mode=request.mode,
|
| 339 |
+
status="success",
|
| 340 |
+
conversation_id=conversation_id
|
| 341 |
+
)
|
| 342 |
|
|
|
|
| 343 |
except Exception as e:
|
| 344 |
+
logger.error(f"General chat error: {e}")
|
| 345 |
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 346 |
|
| 347 |
+
# Custom AI Chat - with LightRAG
|
| 348 |
@app.post("/chat/custom/{ai_id}", response_model=QuestionResponse)
|
| 349 |
async def chat_custom_ai(
|
| 350 |
ai_id: str,
|
| 351 |
request: QuestionRequest,
|
| 352 |
current_user: dict = Depends(get_current_user)
|
| 353 |
):
|
| 354 |
+
if not lightrag_manager:
|
| 355 |
+
raise HTTPException(status_code=503, detail="LightRAG system not initialized")
|
| 356 |
|
| 357 |
user_id = current_user["id"]
|
| 358 |
|
|
|
|
| 370 |
# Add user message
|
| 371 |
await ConversationManager.add_message(conversation_id, "user", request.question)
|
| 372 |
|
| 373 |
+
# Get LightRAG instance for this custom AI
|
| 374 |
+
rag = await lightrag_manager.get_rag_instance("custom", user_id, ai_id)
|
| 375 |
|
| 376 |
+
# Query with conversation memory
|
| 377 |
+
response = await lightrag_manager.query_with_memory(
|
| 378 |
+
rag=rag,
|
| 379 |
+
question=request.question,
|
| 380 |
+
conversation_id=conversation_id,
|
| 381 |
+
mode=request.mode or "hybrid",
|
| 382 |
+
max_memory_turns=10
|
| 383 |
+
)
|
| 384 |
|
| 385 |
+
# Add assistant response
|
| 386 |
+
await ConversationManager.add_message(
|
| 387 |
+
conversation_id,
|
| 388 |
+
"assistant",
|
| 389 |
+
response,
|
| 390 |
+
{
|
| 391 |
+
"mode": request.mode,
|
| 392 |
+
"ai_name": ai_info['name'],
|
| 393 |
+
"lightrag_used": True
|
| 394 |
+
}
|
| 395 |
+
)
|
| 396 |
|
| 397 |
+
return QuestionResponse(
|
| 398 |
+
answer=response,
|
| 399 |
+
mode=request.mode,
|
| 400 |
+
status="success",
|
| 401 |
+
conversation_id=conversation_id
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
except Exception as e:
|
| 405 |
+
logger.error(f"Custom AI chat error: {e}")
|
| 406 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 407 |
|
| 408 |
+
# File upload endpoint
|
| 409 |
+
@app.post("/upload", response_model=List[FileUploadResponse])
|
| 410 |
+
async def upload_files(
|
| 411 |
+
files: List[UploadFile] = File(...),
|
| 412 |
+
current_user: dict = Depends(get_current_user)
|
| 413 |
+
):
|
| 414 |
+
user_id = current_user["id"]
|
| 415 |
+
user_upload_dir = Path(USER_DATA_DIR) / f"user_{user_id}" / "uploads"
|
| 416 |
+
user_upload_dir.mkdir(parents=True, exist_ok=True)
|
| 417 |
+
|
| 418 |
+
uploaded_files = []
|
| 419 |
+
allowed_extensions = {'.txt', '.md', '.json', '.pdf', '.docx'}
|
| 420 |
+
|
| 421 |
+
for file in files:
|
| 422 |
+
if file.size > MAX_UPLOAD_SIZE:
|
| 423 |
+
raise HTTPException(
|
| 424 |
+
status_code=413,
|
| 425 |
+
detail=f"File {file.filename} too large. Max size: {MAX_UPLOAD_SIZE} bytes"
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
file_extension = Path(file.filename).suffix.lower()
|
| 429 |
+
if file_extension not in allowed_extensions:
|
| 430 |
+
raise HTTPException(
|
| 431 |
+
status_code=400,
|
| 432 |
+
detail=f"File type {file_extension} not allowed. Allowed: {allowed_extensions}"
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
file_path = user_upload_dir / file.filename
|
| 436 |
+
with open(file_path, "wb") as buffer:
|
| 437 |
+
shutil.copyfileobj(file.file, buffer)
|
| 438 |
+
|
| 439 |
+
uploaded_files.append(FileUploadResponse(
|
| 440 |
+
filename=file.filename,
|
| 441 |
+
size=file_path.stat().st_size,
|
| 442 |
+
message="Uploaded successfully"
|
| 443 |
+
))
|
| 444 |
+
|
| 445 |
+
return uploaded_files
|
| 446 |
|
| 447 |
+
# Create custom AI - with LightRAG
|
| 448 |
+
@app.post("/create-custom-ai")
|
| 449 |
+
async def create_custom_ai(
|
| 450 |
+
ai_data: CustomAIRequest,
|
| 451 |
+
current_user: dict = Depends(get_current_user)
|
| 452 |
+
):
|
| 453 |
+
if not lightrag_manager:
|
| 454 |
+
raise HTTPException(status_code=503, detail="LightRAG system not initialized")
|
| 455 |
+
|
| 456 |
+
user_id = current_user["id"]
|
| 457 |
+
user_upload_dir = Path(USER_DATA_DIR) / f"user_{user_id}" / "uploads"
|
| 458 |
+
|
| 459 |
+
if not user_upload_dir.exists() or not list(user_upload_dir.glob("*")):
|
| 460 |
+
raise HTTPException(status_code=400, detail="No files uploaded. Please upload knowledge files first.")
|
| 461 |
+
|
| 462 |
+
# Read uploaded files
|
| 463 |
+
uploaded_files = list(user_upload_dir.glob("*"))
|
| 464 |
+
knowledge_texts = []
|
| 465 |
+
|
| 466 |
+
for file_path in uploaded_files:
|
| 467 |
+
if file_path.is_file():
|
| 468 |
+
try:
|
| 469 |
+
# Read file content based on extension
|
| 470 |
+
if file_path.suffix.lower() in ['.txt', '.md']:
|
| 471 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 472 |
+
content = f.read()
|
| 473 |
+
knowledge_texts.append(content)
|
| 474 |
+
elif file_path.suffix.lower() == '.json':
|
| 475 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 476 |
+
json_data = json.load(f)
|
| 477 |
+
# Convert JSON to text representation
|
| 478 |
+
content = json.dumps(json_data, indent=2)
|
| 479 |
+
knowledge_texts.append(content)
|
| 480 |
+
# Add more file type handlers as needed
|
| 481 |
+
|
| 482 |
+
except Exception as e:
|
| 483 |
+
logger.warning(f"Error reading file {file_path}: {e}")
|
| 484 |
+
continue
|
| 485 |
+
|
| 486 |
+
if not knowledge_texts:
|
| 487 |
+
raise HTTPException(status_code=400, detail="No readable content found in uploaded files")
|
| 488 |
+
|
| 489 |
+
# Generate AI ID
|
| 490 |
+
ai_id = str(uuid.uuid4())
|
| 491 |
+
|
| 492 |
+
try:
|
| 493 |
+
# Create LightRAG instance with knowledge
|
| 494 |
+
await lightrag_manager.create_custom_rag(user_id, ai_id, knowledge_texts)
|
| 495 |
+
|
| 496 |
+
# Store in database
|
| 497 |
+
knowledge_files_metadata = [
|
| 498 |
+
{"filename": f.name, "size": f.stat().st_size}
|
| 499 |
+
for f in uploaded_files if f.is_file()
|
| 500 |
+
]
|
| 501 |
+
db_ai_id = await CustomAIManager.create_custom_ai(
|
| 502 |
+
user_id, ai_data.name, ai_data.description, knowledge_files_metadata
|
| 503 |
+
)
|
| 504 |
|
| 505 |
+
ai_info = {
|
| 506 |
+
"id": ai_id,
|
| 507 |
+
"name": ai_data.name,
|
| 508 |
+
"description": ai_data.description,
|
| 509 |
+
"created_at": datetime.now().isoformat(),
|
| 510 |
+
"files_count": len(uploaded_files),
|
| 511 |
+
"knowledge_chunks": len(knowledge_texts)
|
| 512 |
+
}
|
| 513 |
|
| 514 |
+
return {
|
| 515 |
+
"ai_id": ai_id,
|
| 516 |
+
"message": "Custom AI created successfully with LightRAG knowledge base",
|
| 517 |
+
"ai_info": ai_info
|
| 518 |
+
}
|
| 519 |
|
|
|
|
| 520 |
except Exception as e:
|
| 521 |
+
logger.error(f"Error creating custom AI: {e}")
|
| 522 |
+
raise HTTPException(status_code=500, detail=f"Failed to create custom AI: {str(e)}")
|
| 523 |
+
|
| 524 |
+
# Get user's custom AIs
|
| 525 |
+
@app.get("/my-ais")
|
| 526 |
+
async def get_user_ais(current_user: dict = Depends(get_current_user)):
|
| 527 |
+
user_id = current_user["id"]
|
| 528 |
+
try:
|
| 529 |
+
ais = await CustomAIManager.get_user_ais(user_id)
|
| 530 |
+
return {"ais": ais, "count": len(ais)}
|
| 531 |
+
except Exception as e:
|
| 532 |
+
logger.error(f"Error getting user AIs: {e}")
|
| 533 |
+
return {"ais": [], "count": 0}
|
| 534 |
|
| 535 |
# Get user conversations
|
| 536 |
@app.get("/conversations")
|
|
|
|
| 543 |
return {"conversations": cached}
|
| 544 |
|
| 545 |
try:
|
| 546 |
+
# In a real implementation, query your database
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
conversations = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
|
| 549 |
# Cache for 15 minutes
|
| 550 |
await db_manager.cache_set(f"user:{user_id}:conversations", conversations, 900)
|
| 551 |
|
| 552 |
return {"conversations": conversations}
|
| 553 |
except Exception as e:
|
| 554 |
+
logger.error(f"Error getting conversations: {e}")
|
| 555 |
return {"conversations": []}
|
| 556 |
|
| 557 |
# Get specific conversation messages
|
|
|
|
| 563 |
messages = await ConversationManager.get_conversation_messages(conversation_id, user_id)
|
| 564 |
return {"messages": messages}
|
| 565 |
except Exception as e:
|
| 566 |
+
logger.error(f"Error getting conversation messages: {e}")
|
| 567 |
return {"messages": []}
|
| 568 |
|
| 569 |
# Delete conversation
|
|
|
|
| 572 |
user_id = current_user["id"]
|
| 573 |
|
| 574 |
try:
|
| 575 |
+
# In a real implementation, update your database
|
| 576 |
+
# query = "UPDATE conversations SET is_active = false WHERE id = $1 AND user_id = $2"
|
| 577 |
+
# await db_manager.execute_query(query, conversation_id, user_id)
|
| 578 |
|
| 579 |
# Invalidate cache
|
| 580 |
await db_manager.cache_delete(f"user:{user_id}:conversations")
|
| 581 |
|
| 582 |
return {"message": "Conversation deleted successfully"}
|
| 583 |
except Exception as e:
|
| 584 |
+
logger.error(f"Error deleting conversation: {e}")
|
| 585 |
raise HTTPException(status_code=500, detail="Failed to delete conversation")
|
| 586 |
|
| 587 |
+
# Clear conversation memory (LightRAG specific)
|
| 588 |
+
@app.delete("/conversations/{conversation_id}/memory")
|
| 589 |
+
async def clear_conversation_memory(
|
| 590 |
+
conversation_id: str,
|
| 591 |
+
current_user: dict = Depends(get_current_user)
|
| 592 |
+
):
|
| 593 |
+
"""Clear conversation memory for LightRAG"""
|
| 594 |
+
if lightrag_manager:
|
| 595 |
+
lightrag_manager.clear_conversation_memory(conversation_id)
|
| 596 |
+
|
| 597 |
+
return {"message": "Conversation memory cleared"}
|
| 598 |
+
|
| 599 |
+
# Get conversation memory status
|
| 600 |
+
@app.get("/conversations/{conversation_id}/memory")
|
| 601 |
+
async def get_conversation_memory_status(
|
| 602 |
+
conversation_id: str,
|
| 603 |
+
current_user: dict = Depends(get_current_user)
|
| 604 |
+
):
|
| 605 |
+
"""Get conversation memory status"""
|
| 606 |
+
if not lightrag_manager:
|
| 607 |
+
return {"has_memory": False, "message_count": 0}
|
| 608 |
+
|
| 609 |
+
memory = lightrag_manager.conversation_memory.get(conversation_id, [])
|
| 610 |
+
|
| 611 |
+
return {
|
| 612 |
+
"has_memory": len(memory) > 0,
|
| 613 |
+
"message_count": len(memory),
|
| 614 |
+
"last_updated": memory[-1]["timestamp"] if memory else None
|
| 615 |
+
}
|
| 616 |
+
|
| 617 |
# Legacy endpoints for backward compatibility
|
| 618 |
@app.post("/ask", response_model=QuestionResponse)
|
| 619 |
async def ask_legacy(request: QuestionRequest, current_user: dict = Depends(get_current_user)):
|
|
|
|
| 623 |
@app.get("/modes")
|
| 624 |
async def get_modes():
|
| 625 |
return {
|
| 626 |
+
"modes": ["hybrid", "local", "global", "naive"],
|
| 627 |
"default": "hybrid"
|
| 628 |
}
|
| 629 |
|
|
|
|
| 633 |
"fire_safety": [
|
| 634 |
"What are the fire exit requirements for a commercial building?",
|
| 635 |
"How many fire extinguishers are needed in an office space?",
|
| 636 |
+
"What is the maximum travel distance to an exit?",
|
| 637 |
+
"What are the requirements for emergency lighting?",
|
| 638 |
+
"How often should fire safety equipment be inspected?"
|
| 639 |
],
|
| 640 |
"general": [
|
| 641 |
+
"How do I create a presentation?",
|
| 642 |
+
"What is machine learning?",
|
| 643 |
+
"Explain quantum computing",
|
| 644 |
+
"Help me plan a project timeline",
|
| 645 |
+
"What are the best practices for remote work?"
|
| 646 |
]
|
| 647 |
}
|
| 648 |
|
| 649 |
+
# System information endpoint
|
| 650 |
+
@app.get("/system/info")
|
| 651 |
+
async def get_system_info():
|
| 652 |
+
return {
|
| 653 |
+
"service": "YourAI",
|
| 654 |
+
"version": "2.0.0",
|
| 655 |
+
"features": {
|
| 656 |
+
"lightrag_integration": True,
|
| 657 |
+
"conversation_memory": True,
|
| 658 |
+
"custom_ai_support": True,
|
| 659 |
+
"file_upload": True,
|
| 660 |
+
"multi_model_support": True
|
| 661 |
+
},
|
| 662 |
+
"models": {
|
| 663 |
+
"llm": LLM_MODEL,
|
| 664 |
+
"embedding": EMBEDDING_MODEL
|
| 665 |
+
},
|
| 666 |
+
"storage": {
|
| 667 |
+
"graph": "NetworkXStorage",
|
| 668 |
+
"vector": "NanoVectorDBStorage",
|
| 669 |
+
"conversation_memory": "In-Memory"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 670 |
}
|
| 671 |
+
}
|
| 672 |
|
| 673 |
+
# System status endpoint
|
| 674 |
+
@app.get("/system/status")
|
| 675 |
+
async def get_system_status():
|
| 676 |
+
status = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 677 |
"status": "healthy",
|
| 678 |
+
"components": {
|
| 679 |
+
"lightrag": lightrag_manager is not None,
|
| 680 |
+
"cloudflare_worker": cloudflare_worker is not None,
|
| 681 |
+
"database": True, # Implement actual DB health check
|
| 682 |
+
"cache": True # Implement actual cache health check
|
| 683 |
+
},
|
| 684 |
+
"memory": {
|
| 685 |
+
"active_conversations": len(lightrag_manager.conversation_memory) if lightrag_manager else 0,
|
| 686 |
+
"rag_instances": len(lightrag_manager.rag_instances) if lightrag_manager else 0
|
| 687 |
+
}
|
| 688 |
}
|
| 689 |
|
| 690 |
+
# Overall health check
|
| 691 |
+
all_healthy = all(status["components"].values())
|
| 692 |
+
status["status"] = "healthy" if all_healthy else "unhealthy"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
|
| 694 |
+
return status
|
| 695 |
+
|
| 696 |
+
# Test endpoint for development
|
| 697 |
+
@app.get("/test")
|
| 698 |
+
async def test_endpoint():
|
| 699 |
+
return {
|
| 700 |
+
"message": "Test endpoint working",
|
| 701 |
+
"timestamp": datetime.now().isoformat(),
|
| 702 |
+
"environment": {
|
| 703 |
+
"cloudflare_configured": bool(CLOUDFLARE_API_KEY),
|
| 704 |
+
"database_configured": bool(DATABASE_URL),
|
| 705 |
+
"redis_configured": bool(REDIS_URL)
|
| 706 |
+
}
|
| 707 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
|
| 709 |
if __name__ == "__main__":
|
| 710 |
import uvicorn
|