al1kss commited on
Commit
6a9603d
·
verified ·
1 Parent(s): e4e1400

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -55
app.py CHANGED
@@ -1,64 +1,88 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import asyncio
3
+ from main import app, rag_instance, startup_event
4
+ import uvicorn
5
+ import threading
6
+ import time
7
 
8
+ # Initialize the FastAPI app
9
+ async def init_app():
10
+ await startup_event()
 
11
 
12
+ # Run FastAPI in background
13
+ def run_fastapi():
14
+ uvicorn.run(app, host="0.0.0.0", port=7860)
15
 
16
+ # Start FastAPI server in background thread
17
+ threading.Thread(target=run_fastapi, daemon=True).start()
 
 
 
 
 
 
 
18
 
19
+ # Initialize RAG system
20
+ asyncio.run(init_app())
 
 
 
21
 
22
+ # Simple Gradio interface
23
+ async def ask_question(question, mode="hybrid"):
24
+ if not rag_instance:
25
+ return "❌ RAG system not initialized yet. Please wait..."
26
+
27
+ try:
28
+ from lightrag import QueryParam
29
+ response = await rag_instance.aquery(
30
+ question,
31
+ param=QueryParam(mode=mode)
32
+ )
33
+ return response
34
+ except Exception as e:
35
+ return f"❌ Error: {str(e)}"
36
 
37
+ def sync_ask_question(question, mode):
38
+ return asyncio.run(ask_question(question, mode))
39
 
40
+ # Create Gradio interface
41
+ with gr.Blocks(title="🔥 Fire Safety AI Assistant") as demo:
42
+ gr.HTML("<h1>🔥 Fire Safety AI Assistant</h1>")
43
+ gr.HTML("<p>Ask questions about Vietnamese fire safety regulations</p>")
44
+
45
+ with gr.Row():
46
+ with gr.Column():
47
+ question_input = gr.Textbox(
48
+ label="Your Question",
49
+ placeholder="What are the requirements for emergency exits?",
50
+ lines=2
51
+ )
52
+ mode_dropdown = gr.Dropdown(
53
+ choices=["hybrid", "local", "global", "naive"],
54
+ value="hybrid",
55
+ label="Search Mode"
56
+ )
57
+ submit_btn = gr.Button("Ask Question", variant="primary")
58
+
59
+ with gr.Column():
60
+ answer_output = gr.Textbox(
61
+ label="Answer",
62
+ lines=10,
63
+ show_copy_button=True
64
+ )
65
+
66
+ # Example questions
67
+ gr.HTML("<h3>Example Questions:</h3>")
68
+ examples = [
69
+ "What are the requirements for emergency exits?",
70
+ "How many exits does a building need?",
71
+ "What are fire safety rules for stairwells?",
72
+ "What are building safety requirements?",
73
+ ]
74
+
75
+ for example in examples:
76
+ gr.Button(example).click(
77
+ lambda x=example: x,
78
+ outputs=question_input
79
+ )
80
+
81
+ submit_btn.click(
82
+ sync_ask_question,
83
+ inputs=[question_input, mode_dropdown],
84
+ outputs=answer_output
85
+ )
86
 
87
+ # Also expose FastAPI at /api
88
+ demo.launch(server_name="0.0.0.0", server_port=7860)