Create app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,88 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import asyncio
|
| 3 |
+
from main import app, rag_instance, startup_event
|
| 4 |
+
import uvicorn
|
| 5 |
+
import threading
|
| 6 |
+
import time
|
| 7 |
|
| 8 |
+
# Initialize the FastAPI app
|
| 9 |
+
async def init_app():
|
| 10 |
+
await startup_event()
|
|
|
|
| 11 |
|
| 12 |
+
# Run FastAPI in background
|
| 13 |
+
def run_fastapi():
|
| 14 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 15 |
|
| 16 |
+
# Start FastAPI server in background thread
|
| 17 |
+
threading.Thread(target=run_fastapi, daemon=True).start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Initialize RAG system
|
| 20 |
+
asyncio.run(init_app())
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Simple Gradio interface
|
| 23 |
+
async def ask_question(question, mode="hybrid"):
|
| 24 |
+
if not rag_instance:
|
| 25 |
+
return "❌ RAG system not initialized yet. Please wait..."
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
from lightrag import QueryParam
|
| 29 |
+
response = await rag_instance.aquery(
|
| 30 |
+
question,
|
| 31 |
+
param=QueryParam(mode=mode)
|
| 32 |
+
)
|
| 33 |
+
return response
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return f"❌ Error: {str(e)}"
|
| 36 |
|
| 37 |
+
def sync_ask_question(question, mode):
|
| 38 |
+
return asyncio.run(ask_question(question, mode))
|
| 39 |
|
| 40 |
+
# Create Gradio interface
|
| 41 |
+
with gr.Blocks(title="🔥 Fire Safety AI Assistant") as demo:
|
| 42 |
+
gr.HTML("<h1>🔥 Fire Safety AI Assistant</h1>")
|
| 43 |
+
gr.HTML("<p>Ask questions about Vietnamese fire safety regulations</p>")
|
| 44 |
+
|
| 45 |
+
with gr.Row():
|
| 46 |
+
with gr.Column():
|
| 47 |
+
question_input = gr.Textbox(
|
| 48 |
+
label="Your Question",
|
| 49 |
+
placeholder="What are the requirements for emergency exits?",
|
| 50 |
+
lines=2
|
| 51 |
+
)
|
| 52 |
+
mode_dropdown = gr.Dropdown(
|
| 53 |
+
choices=["hybrid", "local", "global", "naive"],
|
| 54 |
+
value="hybrid",
|
| 55 |
+
label="Search Mode"
|
| 56 |
+
)
|
| 57 |
+
submit_btn = gr.Button("Ask Question", variant="primary")
|
| 58 |
+
|
| 59 |
+
with gr.Column():
|
| 60 |
+
answer_output = gr.Textbox(
|
| 61 |
+
label="Answer",
|
| 62 |
+
lines=10,
|
| 63 |
+
show_copy_button=True
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Example questions
|
| 67 |
+
gr.HTML("<h3>Example Questions:</h3>")
|
| 68 |
+
examples = [
|
| 69 |
+
"What are the requirements for emergency exits?",
|
| 70 |
+
"How many exits does a building need?",
|
| 71 |
+
"What are fire safety rules for stairwells?",
|
| 72 |
+
"What are building safety requirements?",
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
for example in examples:
|
| 76 |
+
gr.Button(example).click(
|
| 77 |
+
lambda x=example: x,
|
| 78 |
+
outputs=question_input
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
submit_btn.click(
|
| 82 |
+
sync_ask_question,
|
| 83 |
+
inputs=[question_input, mode_dropdown],
|
| 84 |
+
outputs=answer_output
|
| 85 |
+
)
|
| 86 |
|
| 87 |
+
# Also expose FastAPI at /api
|
| 88 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|