Update main.py
Browse files
main.py
CHANGED
|
@@ -1,16 +1,34 @@
|
|
| 1 |
-
|
| 2 |
-
from fastapi import FastAPI, HTTPException
|
| 3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
-
from pydantic import BaseModel
|
| 5 |
import asyncio
|
| 6 |
-
from lightrag import LightRAG, QueryParam
|
| 7 |
-
from lightrag.utils import EmbeddingFunc
|
| 8 |
import os
|
|
|
|
| 9 |
import requests
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
from typing import List
|
| 12 |
|
| 13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class CloudflareWorker:
|
| 15 |
def __init__(self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str):
|
| 16 |
self.cloudflare_api_key = cloudflare_api_key
|
|
@@ -20,20 +38,21 @@ class CloudflareWorker:
|
|
| 20 |
self.max_tokens = 4080
|
| 21 |
self.max_response_tokens = 4080
|
| 22 |
|
| 23 |
-
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
|
| 24 |
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
|
| 25 |
|
| 26 |
try:
|
| 27 |
response_raw = requests.post(
|
| 28 |
f"{self.api_base_url}{model_name}",
|
| 29 |
headers=headers,
|
| 30 |
-
json=input_
|
|
|
|
| 31 |
).json()
|
| 32 |
|
| 33 |
result = response_raw.get("result", {})
|
| 34 |
|
| 35 |
if "data" in result:
|
| 36 |
-
return np.array(result["data"])
|
| 37 |
if "response" in result:
|
| 38 |
return result["response"]
|
| 39 |
|
|
@@ -57,23 +76,79 @@ class CloudflareWorker:
|
|
| 57 |
"response_token_limit": self.max_response_tokens,
|
| 58 |
}
|
| 59 |
|
| 60 |
-
result = await self._send_request(self.llm_model_name, input_
|
| 61 |
return result if result is not None else "Error: Failed to get response"
|
| 62 |
|
| 63 |
-
async def embedding_chunk(self, texts: List[str])
|
| 64 |
input_ = {
|
| 65 |
"text": texts,
|
| 66 |
"max_tokens": self.max_tokens,
|
| 67 |
"response_token_limit": self.max_response_tokens,
|
| 68 |
}
|
| 69 |
|
| 70 |
-
result = await self._send_request(self.embedding_model_name, input_
|
| 71 |
|
| 72 |
if result is None:
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
return result
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# Configuration
|
| 78 |
CLOUDFLARE_API_KEY = os.getenv('CLOUDFLARE_API_KEY', 'lMbDDfHi887AK243ZUenm4dHV2nwEx2NSmX6xuq5')
|
| 79 |
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/07c4bcfbc1891c3e528e1c439fee68bd/ai/run/"
|
|
@@ -81,126 +156,181 @@ EMBEDDING_MODEL = '@cf/baai/bge-m3'
|
|
| 81 |
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
|
| 82 |
WORKING_DIR = "./dickens"
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
app = FastAPI(title="Fire Safety AI Assistant API", version="1.0.0")
|
| 86 |
-
|
| 87 |
-
# Enable CORS for frontend
|
| 88 |
-
app.add_middleware(
|
| 89 |
-
CORSMiddleware,
|
| 90 |
-
allow_origins=["*"], # In production, replace with your frontend domain
|
| 91 |
-
allow_credentials=True,
|
| 92 |
-
allow_methods=["*"],
|
| 93 |
-
allow_headers=["*"],
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
# Global RAG instance
|
| 97 |
rag_instance = None
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
status: str
|
| 108 |
-
|
| 109 |
-
@app.on_event("startup")
|
| 110 |
-
async def startup_event():
|
| 111 |
-
"""Initialize RAG system on startup"""
|
| 112 |
-
global rag_instance
|
| 113 |
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
|
|
|
| 116 |
cloudflare_worker = CloudflareWorker(
|
| 117 |
cloudflare_api_key=CLOUDFLARE_API_KEY,
|
| 118 |
api_base_url=API_BASE_URL,
|
| 119 |
embedding_model_name=EMBEDDING_MODEL,
|
| 120 |
llm_model_name=LLM_MODEL,
|
| 121 |
)
|
| 122 |
-
|
| 123 |
-
rag_instance = LightRAG(
|
| 124 |
-
working_dir=WORKING_DIR,
|
| 125 |
-
max_parallel_insert=2,
|
| 126 |
-
llm_model_func=cloudflare_worker.query,
|
| 127 |
-
llm_model_name=LLM_MODEL,
|
| 128 |
-
llm_model_max_token_size=4080,
|
| 129 |
-
embedding_func=EmbeddingFunc(
|
| 130 |
-
embedding_dim=1024,
|
| 131 |
-
max_token_size=2048,
|
| 132 |
-
func=lambda texts: cloudflare_worker.embedding_chunk(texts),
|
| 133 |
-
),
|
| 134 |
-
)
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
return {"status": "healthy", "rag_ready": rag_instance is not None}
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
if not rag_instance:
|
| 152 |
-
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 153 |
-
|
| 154 |
-
if not request.question.strip():
|
| 155 |
-
raise HTTPException(status_code=400, detail="Question cannot be empty")
|
| 156 |
|
| 157 |
try:
|
| 158 |
-
|
| 159 |
-
print(f"π Processing question: {request.question}")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
|
|
|
|
|
|
|
|
|
| 172 |
except Exception as e:
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
if __name__ == "__main__":
|
| 205 |
-
|
| 206 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import asyncio
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
+
import zipfile
|
| 5 |
import requests
|
| 6 |
+
from pathlib import Path
|
| 7 |
import numpy as np
|
| 8 |
from typing import List
|
| 9 |
|
| 10 |
+
# Try different LightRAG imports based on version
|
| 11 |
+
try:
|
| 12 |
+
from lightrag import LightRAG, QueryParam
|
| 13 |
+
from lightrag.utils import EmbeddingFunc
|
| 14 |
+
LIGHTRAG_AVAILABLE = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
try:
|
| 17 |
+
from lightrag.lightrag import LightRAG
|
| 18 |
+
from lightrag.query import QueryParam
|
| 19 |
+
from lightrag.utils import EmbeddingFunc
|
| 20 |
+
LIGHTRAG_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
try:
|
| 23 |
+
from lightrag.core import LightRAG
|
| 24 |
+
from lightrag.core import QueryParam
|
| 25 |
+
from lightrag.utils import EmbeddingFunc
|
| 26 |
+
LIGHTRAG_AVAILABLE = True
|
| 27 |
+
except ImportError:
|
| 28 |
+
print("β LightRAG import failed - using fallback mode")
|
| 29 |
+
LIGHTRAG_AVAILABLE = False
|
| 30 |
+
|
| 31 |
+
# Fallback CloudflareWorker with simple search
|
| 32 |
class CloudflareWorker:
|
| 33 |
def __init__(self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str):
|
| 34 |
self.cloudflare_api_key = cloudflare_api_key
|
|
|
|
| 38 |
self.max_tokens = 4080
|
| 39 |
self.max_response_tokens = 4080
|
| 40 |
|
| 41 |
+
async def _send_request(self, model_name: str, input_: dict, debug_log: str = ""):
|
| 42 |
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
|
| 43 |
|
| 44 |
try:
|
| 45 |
response_raw = requests.post(
|
| 46 |
f"{self.api_base_url}{model_name}",
|
| 47 |
headers=headers,
|
| 48 |
+
json=input_,
|
| 49 |
+
timeout=30
|
| 50 |
).json()
|
| 51 |
|
| 52 |
result = response_raw.get("result", {})
|
| 53 |
|
| 54 |
if "data" in result:
|
| 55 |
+
return np.array(result["data"]) if LIGHTRAG_AVAILABLE else result["data"]
|
| 56 |
if "response" in result:
|
| 57 |
return result["response"]
|
| 58 |
|
|
|
|
| 76 |
"response_token_limit": self.max_response_tokens,
|
| 77 |
}
|
| 78 |
|
| 79 |
+
result = await self._send_request(self.llm_model_name, input_)
|
| 80 |
return result if result is not None else "Error: Failed to get response"
|
| 81 |
|
| 82 |
+
async def embedding_chunk(self, texts: List[str]):
|
| 83 |
input_ = {
|
| 84 |
"text": texts,
|
| 85 |
"max_tokens": self.max_tokens,
|
| 86 |
"response_token_limit": self.max_response_tokens,
|
| 87 |
}
|
| 88 |
|
| 89 |
+
result = await self._send_request(self.embedding_model_name, input_)
|
| 90 |
|
| 91 |
if result is None:
|
| 92 |
+
if LIGHTRAG_AVAILABLE:
|
| 93 |
+
return np.random.rand(len(texts), 1024).astype(np.float32)
|
| 94 |
+
else:
|
| 95 |
+
return [[0.0] * 1024 for _ in texts]
|
| 96 |
|
| 97 |
return result
|
| 98 |
|
| 99 |
+
# Simple fallback knowledge store if LightRAG fails
|
| 100 |
+
class SimpleKnowledgeStore:
|
| 101 |
+
def __init__(self, data_dir: str):
|
| 102 |
+
self.data_dir = data_dir
|
| 103 |
+
self.chunks = []
|
| 104 |
+
self.entities = []
|
| 105 |
+
self.load_data()
|
| 106 |
+
|
| 107 |
+
def load_data(self):
|
| 108 |
+
try:
|
| 109 |
+
import json
|
| 110 |
+
chunks_file = Path(self.data_dir) / "kv_store_text_chunks.json"
|
| 111 |
+
if chunks_file.exists():
|
| 112 |
+
with open(chunks_file, 'r', encoding='utf-8') as f:
|
| 113 |
+
data = json.load(f)
|
| 114 |
+
self.chunks = list(data.values()) if data else []
|
| 115 |
+
|
| 116 |
+
entities_file = Path(self.data_dir) / "vdb_entities.json"
|
| 117 |
+
if entities_file.exists():
|
| 118 |
+
with open(entities_file, 'r', encoding='utf-8') as f:
|
| 119 |
+
entities_data = json.load(f)
|
| 120 |
+
if isinstance(entities_data, dict) and 'data' in entities_data:
|
| 121 |
+
self.entities = entities_data['data']
|
| 122 |
+
elif isinstance(entities_data, list):
|
| 123 |
+
self.entities = entities_data
|
| 124 |
+
else:
|
| 125 |
+
self.entities = []
|
| 126 |
+
|
| 127 |
+
print(f"β
Loaded {len(self.chunks)} chunks and {len(self.entities)} entities")
|
| 128 |
+
|
| 129 |
+
except Exception as e:
|
| 130 |
+
print(f"β οΈ Error loading data: {e}")
|
| 131 |
+
self.chunks = []
|
| 132 |
+
self.entities = []
|
| 133 |
+
|
| 134 |
+
def search(self, query: str, limit: int = 5) -> List[str]:
|
| 135 |
+
query_lower = query.lower()
|
| 136 |
+
results = []
|
| 137 |
+
|
| 138 |
+
for chunk in self.chunks:
|
| 139 |
+
if isinstance(chunk, dict) and 'content' in chunk:
|
| 140 |
+
content = chunk['content']
|
| 141 |
+
if any(word in content.lower() for word in query_lower.split()):
|
| 142 |
+
results.append(content)
|
| 143 |
+
|
| 144 |
+
for entity in self.entities:
|
| 145 |
+
if isinstance(entity, dict):
|
| 146 |
+
entity_text = str(entity)
|
| 147 |
+
if any(word in entity_text.lower() for word in query_lower.split()):
|
| 148 |
+
results.append(entity_text)
|
| 149 |
+
|
| 150 |
+
return results[:limit]
|
| 151 |
+
|
| 152 |
# Configuration
|
| 153 |
CLOUDFLARE_API_KEY = os.getenv('CLOUDFLARE_API_KEY', 'lMbDDfHi887AK243ZUenm4dHV2nwEx2NSmX6xuq5')
|
| 154 |
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/07c4bcfbc1891c3e528e1c439fee68bd/ai/run/"
|
|
|
|
| 156 |
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
|
| 157 |
WORKING_DIR = "./dickens"
|
| 158 |
|
| 159 |
+
# Global instances
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
rag_instance = None
|
| 161 |
+
knowledge_store = None
|
| 162 |
+
cloudflare_worker = None
|
| 163 |
|
| 164 |
+
async def initialize_system():
|
| 165 |
+
global rag_instance, knowledge_store, cloudflare_worker
|
| 166 |
+
|
| 167 |
+
print("π Initializing system...")
|
| 168 |
+
|
| 169 |
+
# Download data if needed
|
| 170 |
+
dickens_path = Path(WORKING_DIR)
|
| 171 |
+
has_data = dickens_path.exists() and len(list(dickens_path.glob("*.json"))) > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
if not has_data:
|
| 174 |
+
print("π₯ Downloading RAG database...")
|
| 175 |
+
try:
|
| 176 |
+
# REPLACE YOUR_USERNAME with your actual GitHub username
|
| 177 |
+
data_url = "https://github.com/YOUR_USERNAME/fire-safety-ai/releases/download/v1.0-data/dickens.zip"
|
| 178 |
+
|
| 179 |
+
response = requests.get(data_url, timeout=60)
|
| 180 |
+
response.raise_for_status()
|
| 181 |
+
|
| 182 |
+
with open("dickens.zip", "wb") as f:
|
| 183 |
+
f.write(response.content)
|
| 184 |
+
|
| 185 |
+
with zipfile.ZipFile("dickens.zip", 'r') as zip_ref:
|
| 186 |
+
zip_ref.extractall(".")
|
| 187 |
+
|
| 188 |
+
os.remove("dickens.zip")
|
| 189 |
+
print("β
Data downloaded!")
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
print(f"β οΈ Download failed: {e}")
|
| 193 |
+
os.makedirs(WORKING_DIR, exist_ok=True)
|
| 194 |
|
| 195 |
+
# Initialize Cloudflare worker
|
| 196 |
cloudflare_worker = CloudflareWorker(
|
| 197 |
cloudflare_api_key=CLOUDFLARE_API_KEY,
|
| 198 |
api_base_url=API_BASE_URL,
|
| 199 |
embedding_model_name=EMBEDDING_MODEL,
|
| 200 |
llm_model_name=LLM_MODEL,
|
| 201 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
# Try to initialize LightRAG, fallback to simple store
|
| 204 |
+
if LIGHTRAG_AVAILABLE:
|
| 205 |
+
try:
|
| 206 |
+
rag_instance = LightRAG(
|
| 207 |
+
working_dir=WORKING_DIR,
|
| 208 |
+
max_parallel_insert=2,
|
| 209 |
+
llm_model_func=cloudflare_worker.query,
|
| 210 |
+
llm_model_name=LLM_MODEL,
|
| 211 |
+
llm_model_max_token_size=4080,
|
| 212 |
+
embedding_func=EmbeddingFunc(
|
| 213 |
+
embedding_dim=1024,
|
| 214 |
+
max_token_size=2048,
|
| 215 |
+
func=lambda texts: cloudflare_worker.embedding_chunk(texts),
|
| 216 |
+
),
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
await rag_instance.initialize_storages()
|
| 220 |
+
print("β
LightRAG system initialized!")
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
print(f"β οΈ LightRAG failed, using fallback: {e}")
|
| 224 |
+
knowledge_store = SimpleKnowledgeStore(WORKING_DIR)
|
| 225 |
+
else:
|
| 226 |
+
print("π Using simple knowledge store...")
|
| 227 |
+
knowledge_store = SimpleKnowledgeStore(WORKING_DIR)
|
| 228 |
+
|
| 229 |
+
print("β
System ready!")
|
| 230 |
|
| 231 |
+
# Initialize on startup
|
| 232 |
+
asyncio.run(initialize_system())
|
|
|
|
| 233 |
|
| 234 |
+
async def ask_question(question, mode="hybrid"):
|
| 235 |
+
if not question.strip():
|
| 236 |
+
return "β Please enter a question."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
try:
|
| 239 |
+
print(f"π Processing question: {question}")
|
|
|
|
| 240 |
|
| 241 |
+
# Use LightRAG if available, otherwise fallback
|
| 242 |
+
if rag_instance and LIGHTRAG_AVAILABLE:
|
| 243 |
+
response = await rag_instance.aquery(
|
| 244 |
+
question,
|
| 245 |
+
param=QueryParam(mode=mode)
|
| 246 |
+
)
|
| 247 |
+
return response
|
| 248 |
|
| 249 |
+
elif knowledge_store and cloudflare_worker:
|
| 250 |
+
# Fallback: simple search + Cloudflare AI
|
| 251 |
+
relevant_chunks = knowledge_store.search(question, limit=3)
|
| 252 |
+
context = "\n".join(relevant_chunks) if relevant_chunks else "No specific context found."
|
| 253 |
+
|
| 254 |
+
system_prompt = """You are a Fire Safety AI Assistant specializing in Vietnamese fire safety regulations.
|
| 255 |
+
Use the provided context to answer questions about building codes, emergency exits, and fire safety requirements."""
|
| 256 |
+
|
| 257 |
+
user_prompt = f"""Context: {context}
|
| 258 |
+
|
| 259 |
+
Question: {question}
|
| 260 |
+
|
| 261 |
+
Please provide a helpful answer based on the context about Vietnamese fire safety regulations."""
|
| 262 |
+
|
| 263 |
+
response = await cloudflare_worker.query(user_prompt, system_prompt)
|
| 264 |
+
return response
|
| 265 |
|
| 266 |
+
else:
|
| 267 |
+
return "β System not initialized yet. Please wait..."
|
| 268 |
+
|
| 269 |
except Exception as e:
|
| 270 |
+
return f"β Error: {str(e)}"
|
| 271 |
+
|
| 272 |
+
def sync_ask_question(question, mode):
|
| 273 |
+
return asyncio.run(ask_question(question, mode))
|
| 274 |
+
|
| 275 |
+
# Create Gradio interface
|
| 276 |
+
with gr.Blocks(title="π₯ Fire Safety AI Assistant", theme=gr.themes.Soft()) as demo:
|
| 277 |
+
gr.HTML("<h1 style='text-align: center;'>π₯ Fire Safety AI Assistant</h1>")
|
| 278 |
+
gr.HTML("<p style='text-align: center;'>Ask questions about Vietnamese fire safety regulations</p>")
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
with gr.Column(scale=1):
|
| 282 |
+
question_input = gr.Textbox(
|
| 283 |
+
label="Your Question",
|
| 284 |
+
placeholder="What are the requirements for emergency exits?",
|
| 285 |
+
lines=3
|
| 286 |
+
)
|
| 287 |
+
mode_dropdown = gr.Dropdown(
|
| 288 |
+
choices=["hybrid", "local", "global", "naive"],
|
| 289 |
+
value="hybrid",
|
| 290 |
+
label="Search Mode",
|
| 291 |
+
info="Hybrid is recommended for best results"
|
| 292 |
+
)
|
| 293 |
+
submit_btn = gr.Button("π Ask Question", variant="primary", size="lg")
|
| 294 |
+
|
| 295 |
+
with gr.Column(scale=2):
|
| 296 |
+
answer_output = gr.Textbox(
|
| 297 |
+
label="Answer",
|
| 298 |
+
lines=15,
|
| 299 |
+
show_copy_button=True
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# System status
|
| 303 |
+
status_text = "β
LightRAG System" if LIGHTRAG_AVAILABLE else "β οΈ Fallback Mode"
|
| 304 |
+
gr.HTML(f"<p style='text-align: center; color: gray;'>Status: {status_text}</p>")
|
| 305 |
+
|
| 306 |
+
# Example questions
|
| 307 |
+
gr.HTML("<h3 style='text-align: center;'>π‘ Example Questions:</h3>")
|
| 308 |
+
|
| 309 |
+
with gr.Row():
|
| 310 |
+
example1 = gr.Button("What are the requirements for emergency exits?", size="sm")
|
| 311 |
+
example2 = gr.Button("How many exits does a building need?", size="sm")
|
| 312 |
+
|
| 313 |
+
with gr.Row():
|
| 314 |
+
example3 = gr.Button("What are fire safety rules for stairwells?", size="sm")
|
| 315 |
+
example4 = gr.Button("What are building safety requirements?", size="sm")
|
| 316 |
+
|
| 317 |
+
# Event handlers
|
| 318 |
+
submit_btn.click(
|
| 319 |
+
sync_ask_question,
|
| 320 |
+
inputs=[question_input, mode_dropdown],
|
| 321 |
+
outputs=answer_output
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
question_input.submit(
|
| 325 |
+
sync_ask_question,
|
| 326 |
+
inputs=[question_input, mode_dropdown],
|
| 327 |
+
outputs=answer_output
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
example1.click(lambda: "What are the requirements for emergency exits?", outputs=question_input)
|
| 331 |
+
example2.click(lambda: "How many exits does a building need?", outputs=question_input)
|
| 332 |
+
example3.click(lambda: "What are fire safety rules for stairwells?", outputs=question_input)
|
| 333 |
+
example4.click(lambda: "What are building safety requirements?", outputs=question_input)
|
| 334 |
|
| 335 |
if __name__ == "__main__":
|
| 336 |
+
demo.launch()
|
|
|