Spaces:
Paused
Paused
alessandro trinca tornidor
commited on
Commit
·
951f1c4
1
Parent(s):
2640499
[feat] add optional embedding_key argument to LISAForCausalLM.evaluate() method
Browse files- lisa_on_cuda/LISA.py +78 -45
- lisa_on_cuda/utils/app_helpers.py +33 -5
- scripts/baremetal_entrypoint.sh +41 -0
- scripts/create_folders_and_variables_if_not_exists.py +51 -0
- scripts/entrypoint.sh +18 -5
lisa_on_cuda/LISA.py
CHANGED
|
@@ -7,13 +7,15 @@ import torch.nn.functional as F
|
|
| 7 |
from .llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, LlavaLlamaModel)
|
| 8 |
from .segment_anything import build_sam_vit_h
|
| 9 |
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def dice_loss(
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
):
|
| 18 |
"""
|
| 19 |
Compute the DICE loss, similar to generalized IOU for masks
|
|
@@ -35,9 +37,9 @@ def dice_loss(
|
|
| 35 |
|
| 36 |
|
| 37 |
def sigmoid_ce_loss(
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
):
|
| 42 |
"""
|
| 43 |
Args:
|
|
@@ -56,9 +58,9 @@ def sigmoid_ce_loss(
|
|
| 56 |
|
| 57 |
class LisaMetaModel:
|
| 58 |
def __init__(
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
):
|
| 63 |
super(LisaMetaModel, self).__init__(config)
|
| 64 |
|
|
@@ -98,9 +100,9 @@ class LisaMetaModel:
|
|
| 98 |
|
| 99 |
class LisaModel(LisaMetaModel, LlavaLlamaModel):
|
| 100 |
def __init__(
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
):
|
| 105 |
super(LisaModel, self).__init__(config, **kwargs)
|
| 106 |
|
|
@@ -117,9 +119,9 @@ class LisaModel(LisaMetaModel, LlavaLlamaModel):
|
|
| 117 |
|
| 118 |
class LISAForCausalLM(LlavaLlamaForCausalLM):
|
| 119 |
def __init__(
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
):
|
| 124 |
if not hasattr(config, "train_mask_decoder"):
|
| 125 |
config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True)
|
|
@@ -131,7 +133,7 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 131 |
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
| 132 |
else:
|
| 133 |
config.mm_vision_tower = config.vision_tower
|
| 134 |
-
|
| 135 |
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
| 136 |
|
| 137 |
super().__init__(config)
|
|
@@ -162,18 +164,18 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 162 |
return self.model_forward(**kwargs)
|
| 163 |
|
| 164 |
def model_forward(
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
):
|
| 178 |
image_embeddings = self.get_visual_embs(images)
|
| 179 |
batch_size = image_embeddings.shape[0]
|
|
@@ -309,17 +311,17 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 309 |
pred_mask = pred_masks[batch_idx]
|
| 310 |
|
| 311 |
assert (
|
| 312 |
-
|
| 313 |
), "gt_mask.shape: {}, pred_mask.shape: {}".format(
|
| 314 |
gt_mask.shape, pred_mask.shape
|
| 315 |
)
|
| 316 |
mask_bce_loss += (
|
| 317 |
-
|
| 318 |
-
|
| 319 |
)
|
| 320 |
mask_dice_loss += (
|
| 321 |
-
|
| 322 |
-
|
| 323 |
)
|
| 324 |
num_masks += gt_mask.shape[0]
|
| 325 |
|
|
@@ -338,16 +340,22 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 338 |
}
|
| 339 |
|
| 340 |
def evaluate(
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
| 349 |
):
|
| 350 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
outputs = self.generate(
|
| 352 |
images=images_clip,
|
| 353 |
input_ids=input_ids,
|
|
@@ -356,11 +364,13 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 356 |
output_hidden_states=True,
|
| 357 |
return_dict_in_generate=True,
|
| 358 |
)
|
|
|
|
| 359 |
output_hidden_states = outputs.hidden_states[-1]
|
| 360 |
output_ids = outputs.sequences
|
| 361 |
|
| 362 |
seg_token_mask = output_ids[:, 1:] == self.seg_token_idx
|
| 363 |
# hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
|
|
|
|
| 364 |
seg_token_mask = torch.cat(
|
| 365 |
[
|
| 366 |
torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(),
|
|
@@ -368,20 +378,25 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 368 |
],
|
| 369 |
dim=1,
|
| 370 |
)
|
|
|
|
| 371 |
|
| 372 |
hidden_states = []
|
| 373 |
|
| 374 |
assert len(self.model.text_hidden_fcs) == 1
|
| 375 |
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
| 376 |
|
|
|
|
| 377 |
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
|
|
|
| 378 |
pred_embeddings = last_hidden_state[seg_token_mask]
|
| 379 |
|
| 380 |
seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ]
|
| 381 |
seg_token_offset = seg_token_counts.cumsum(-1)
|
|
|
|
| 382 |
seg_token_offset = torch.cat(
|
| 383 |
[torch.zeros(1).long().cuda(), seg_token_offset], dim=0
|
| 384 |
)
|
|
|
|
| 385 |
|
| 386 |
pred_embeddings_ = []
|
| 387 |
for i in range(len(seg_token_offset) - 1):
|
|
@@ -389,11 +404,25 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 389 |
pred_embeddings_.append(pred_embeddings[start_i:end_i])
|
| 390 |
pred_embeddings = pred_embeddings_
|
| 391 |
|
| 392 |
-
image_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
multimask_output = False
|
| 395 |
pred_masks = []
|
| 396 |
for i in range(len(pred_embeddings)):
|
|
|
|
| 397 |
(
|
| 398 |
sparse_embeddings,
|
| 399 |
dense_embeddings,
|
|
@@ -403,8 +432,9 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 403 |
masks=None,
|
| 404 |
text_embeds=pred_embeddings[i].unsqueeze(1),
|
| 405 |
)
|
| 406 |
-
|
| 407 |
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
|
|
|
| 408 |
low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
|
| 409 |
image_embeddings=image_embeddings[i].unsqueeze(0),
|
| 410 |
image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
|
|
@@ -412,11 +442,14 @@ class LISAForCausalLM(LlavaLlamaForCausalLM):
|
|
| 412 |
dense_prompt_embeddings=dense_embeddings,
|
| 413 |
multimask_output=multimask_output,
|
| 414 |
)
|
|
|
|
| 415 |
pred_mask = self.model.visual_model.postprocess_masks(
|
| 416 |
low_res_masks,
|
| 417 |
input_size=resize_list[i],
|
| 418 |
original_size=original_size_list[i],
|
| 419 |
)
|
|
|
|
| 420 |
pred_masks.append(pred_mask[:, 0])
|
| 421 |
|
|
|
|
| 422 |
return output_ids, pred_masks
|
|
|
|
| 7 |
from .llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, LlavaLlamaModel)
|
| 8 |
from .segment_anything import build_sam_vit_h
|
| 9 |
|
| 10 |
+
embedding_dict = {}
|
| 11 |
+
|
| 12 |
|
| 13 |
def dice_loss(
|
| 14 |
+
inputs: torch.Tensor,
|
| 15 |
+
targets: torch.Tensor,
|
| 16 |
+
num_masks: float,
|
| 17 |
+
scale=1000, # 100000.0,
|
| 18 |
+
eps=1e-6,
|
| 19 |
):
|
| 20 |
"""
|
| 21 |
Compute the DICE loss, similar to generalized IOU for masks
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
def sigmoid_ce_loss(
|
| 40 |
+
inputs: torch.Tensor,
|
| 41 |
+
targets: torch.Tensor,
|
| 42 |
+
num_masks: float,
|
| 43 |
):
|
| 44 |
"""
|
| 45 |
Args:
|
|
|
|
| 58 |
|
| 59 |
class LisaMetaModel:
|
| 60 |
def __init__(
|
| 61 |
+
self,
|
| 62 |
+
config,
|
| 63 |
+
**kwargs,
|
| 64 |
):
|
| 65 |
super(LisaMetaModel, self).__init__(config)
|
| 66 |
|
|
|
|
| 100 |
|
| 101 |
class LisaModel(LisaMetaModel, LlavaLlamaModel):
|
| 102 |
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
config,
|
| 105 |
+
**kwargs,
|
| 106 |
):
|
| 107 |
super(LisaModel, self).__init__(config, **kwargs)
|
| 108 |
|
|
|
|
| 119 |
|
| 120 |
class LISAForCausalLM(LlavaLlamaForCausalLM):
|
| 121 |
def __init__(
|
| 122 |
+
self,
|
| 123 |
+
config,
|
| 124 |
+
**kwargs,
|
| 125 |
):
|
| 126 |
if not hasattr(config, "train_mask_decoder"):
|
| 127 |
config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True)
|
|
|
|
| 133 |
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
| 134 |
else:
|
| 135 |
config.mm_vision_tower = config.vision_tower
|
| 136 |
+
|
| 137 |
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
| 138 |
|
| 139 |
super().__init__(config)
|
|
|
|
| 164 |
return self.model_forward(**kwargs)
|
| 165 |
|
| 166 |
def model_forward(
|
| 167 |
+
self,
|
| 168 |
+
images: torch.FloatTensor,
|
| 169 |
+
images_clip: torch.FloatTensor,
|
| 170 |
+
input_ids: torch.LongTensor,
|
| 171 |
+
labels: torch.LongTensor,
|
| 172 |
+
attention_masks: torch.LongTensor,
|
| 173 |
+
offset: torch.LongTensor,
|
| 174 |
+
masks_list: List[torch.FloatTensor],
|
| 175 |
+
label_list: List[torch.Tensor],
|
| 176 |
+
resize_list: List[tuple],
|
| 177 |
+
inference: bool = False,
|
| 178 |
+
**kwargs,
|
| 179 |
):
|
| 180 |
image_embeddings = self.get_visual_embs(images)
|
| 181 |
batch_size = image_embeddings.shape[0]
|
|
|
|
| 311 |
pred_mask = pred_masks[batch_idx]
|
| 312 |
|
| 313 |
assert (
|
| 314 |
+
gt_mask.shape[0] == pred_mask.shape[0]
|
| 315 |
), "gt_mask.shape: {}, pred_mask.shape: {}".format(
|
| 316 |
gt_mask.shape, pred_mask.shape
|
| 317 |
)
|
| 318 |
mask_bce_loss += (
|
| 319 |
+
sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
|
| 320 |
+
* gt_mask.shape[0]
|
| 321 |
)
|
| 322 |
mask_dice_loss += (
|
| 323 |
+
dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
|
| 324 |
+
* gt_mask.shape[0]
|
| 325 |
)
|
| 326 |
num_masks += gt_mask.shape[0]
|
| 327 |
|
|
|
|
| 340 |
}
|
| 341 |
|
| 342 |
def evaluate(
|
| 343 |
+
self,
|
| 344 |
+
images_clip,
|
| 345 |
+
images,
|
| 346 |
+
input_ids,
|
| 347 |
+
resize_list,
|
| 348 |
+
original_size_list,
|
| 349 |
+
max_new_tokens=32,
|
| 350 |
+
tokenizer=None,
|
| 351 |
+
model_logger=None,
|
| 352 |
+
embedding_key=None
|
| 353 |
):
|
| 354 |
with torch.no_grad():
|
| 355 |
+
if model_logger is None:
|
| 356 |
+
import logging
|
| 357 |
+
model_logger = logging
|
| 358 |
+
model_logger.debug("start output generation...")
|
| 359 |
outputs = self.generate(
|
| 360 |
images=images_clip,
|
| 361 |
input_ids=input_ids,
|
|
|
|
| 364 |
output_hidden_states=True,
|
| 365 |
return_dict_in_generate=True,
|
| 366 |
)
|
| 367 |
+
model_logger.debug("done output generation...")
|
| 368 |
output_hidden_states = outputs.hidden_states[-1]
|
| 369 |
output_ids = outputs.sequences
|
| 370 |
|
| 371 |
seg_token_mask = output_ids[:, 1:] == self.seg_token_idx
|
| 372 |
# hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
|
| 373 |
+
model_logger.debug(f"start torch.cat to seg_token_mask...")
|
| 374 |
seg_token_mask = torch.cat(
|
| 375 |
[
|
| 376 |
torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(),
|
|
|
|
| 378 |
],
|
| 379 |
dim=1,
|
| 380 |
)
|
| 381 |
+
model_logger.debug("done torch.cat to seg_token_mask...")
|
| 382 |
|
| 383 |
hidden_states = []
|
| 384 |
|
| 385 |
assert len(self.model.text_hidden_fcs) == 1
|
| 386 |
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
| 387 |
|
| 388 |
+
model_logger.debug("start torch.stack to last_hidden_state...")
|
| 389 |
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
| 390 |
+
model_logger.debug("done torch.stack to last_hidden_state...")
|
| 391 |
pred_embeddings = last_hidden_state[seg_token_mask]
|
| 392 |
|
| 393 |
seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ]
|
| 394 |
seg_token_offset = seg_token_counts.cumsum(-1)
|
| 395 |
+
model_logger.debug(f"start torch.cat to seg_token_offset...")
|
| 396 |
seg_token_offset = torch.cat(
|
| 397 |
[torch.zeros(1).long().cuda(), seg_token_offset], dim=0
|
| 398 |
)
|
| 399 |
+
model_logger.debug("done torch.cat to seg_token_offset...")
|
| 400 |
|
| 401 |
pred_embeddings_ = []
|
| 402 |
for i in range(len(seg_token_offset) - 1):
|
|
|
|
| 404 |
pred_embeddings_.append(pred_embeddings[start_i:end_i])
|
| 405 |
pred_embeddings = pred_embeddings_
|
| 406 |
|
| 407 |
+
model_logger.debug(f"start get_visual_embs to image_embeddings with embedding_key {embedding_key}.")
|
| 408 |
+
|
| 409 |
+
if embedding_key is None:
|
| 410 |
+
image_embeddings = self.get_visual_embs(images)
|
| 411 |
+
else:
|
| 412 |
+
try:
|
| 413 |
+
image_embeddings = embedding_dict[embedding_key]
|
| 414 |
+
except KeyError:
|
| 415 |
+
model_logger.debug(f"embedding_key {embedding_key} not in embedding_dict, creating embedding now!")
|
| 416 |
+
image_embeddings = self.get_visual_embs(images)
|
| 417 |
+
embedding_dict[embedding_key] = image_embeddings
|
| 418 |
+
model_logger.debug(f"image embedding added in embedding_dict with embedding_key {embedding_key}!")
|
| 419 |
+
|
| 420 |
+
model_logger.debug("done get_visual_embs to image_embeddings...")
|
| 421 |
|
| 422 |
multimask_output = False
|
| 423 |
pred_masks = []
|
| 424 |
for i in range(len(pred_embeddings)):
|
| 425 |
+
model_logger.debug(f"start ({i}nth time) visual_model.prompt_encoder to sparse/dense")
|
| 426 |
(
|
| 427 |
sparse_embeddings,
|
| 428 |
dense_embeddings,
|
|
|
|
| 432 |
masks=None,
|
| 433 |
text_embeds=pred_embeddings[i].unsqueeze(1),
|
| 434 |
)
|
| 435 |
+
model_logger.debug(f"done ({i}nth) visual_model.prompt_encoder to sparse/dense, start sparse2sparse")
|
| 436 |
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
| 437 |
+
model_logger.debug(f"done ({i}nth) sparse2sparse, start visual_model.mask_decoder")
|
| 438 |
low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
|
| 439 |
image_embeddings=image_embeddings[i].unsqueeze(0),
|
| 440 |
image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
|
|
|
|
| 442 |
dense_prompt_embeddings=dense_embeddings,
|
| 443 |
multimask_output=multimask_output,
|
| 444 |
)
|
| 445 |
+
model_logger.debug(f"done ({i}nth) visual_model.mask_decoder, start postprocess_masks")
|
| 446 |
pred_mask = self.model.visual_model.postprocess_masks(
|
| 447 |
low_res_masks,
|
| 448 |
input_size=resize_list[i],
|
| 449 |
original_size=original_size_list[i],
|
| 450 |
)
|
| 451 |
+
model_logger.debug(f"done ({i}nth) postprocess_masks")
|
| 452 |
pred_masks.append(pred_mask[:, 0])
|
| 453 |
|
| 454 |
+
model_logger.debug(f"env evaluate! ")
|
| 455 |
return output_ids, pred_masks
|
lisa_on_cuda/utils/app_helpers.py
CHANGED
|
@@ -211,8 +211,12 @@ def get_inference_model_by_args(args_to_parse):
|
|
| 211 |
no_seg_out = placeholders["no_seg_out"]
|
| 212 |
|
| 213 |
@session_logger.set_uuid_logging
|
| 214 |
-
def inference(
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
if internal_logger is None:
|
| 217 |
internal_logger = app_logger
|
| 218 |
|
|
@@ -255,7 +259,7 @@ def get_inference_model_by_args(args_to_parse):
|
|
| 255 |
image_np = cv2.imread(input_image)
|
| 256 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
| 257 |
original_size_list = [image_np.shape[:2]]
|
| 258 |
-
|
| 259 |
image_clip = (
|
| 260 |
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
| 261 |
"pixel_values"
|
|
@@ -263,24 +267,27 @@ def get_inference_model_by_args(args_to_parse):
|
|
| 263 |
.unsqueeze(0)
|
| 264 |
.cuda()
|
| 265 |
)
|
|
|
|
| 266 |
internal_logger.info(f"image_clip type: {type(image_clip)}.")
|
| 267 |
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
| 268 |
|
| 269 |
image = transform.apply_image(image_np)
|
| 270 |
resize_list = [image.shape[:2]]
|
| 271 |
|
|
|
|
| 272 |
image = (
|
| 273 |
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
| 274 |
.unsqueeze(0)
|
| 275 |
.cuda()
|
| 276 |
)
|
| 277 |
-
internal_logger.info(f"image_clip type: {type(image_clip)}.")
|
| 278 |
image = set_image_precision_by_args(image, args_to_parse.precision)
|
| 279 |
|
| 280 |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
| 281 |
input_ids = input_ids.unsqueeze(0).cuda()
|
| 282 |
|
| 283 |
-
|
|
|
|
| 284 |
output_ids, pred_masks = model.evaluate(
|
| 285 |
image_clip,
|
| 286 |
image,
|
|
@@ -289,6 +296,8 @@ def get_inference_model_by_args(args_to_parse):
|
|
| 289 |
original_size_list,
|
| 290 |
max_new_tokens=512,
|
| 291 |
tokenizer=tokenizer,
|
|
|
|
|
|
|
| 292 |
)
|
| 293 |
internal_logger.info("model evaluation done, start token decoding...")
|
| 294 |
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
|
@@ -347,6 +356,25 @@ def get_gradio_interface(
|
|
| 347 |
)
|
| 348 |
|
| 349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
if __name__ == '__main__':
|
| 351 |
parsed_args = parse_args([])
|
| 352 |
print("arrrrg:", parsed_args)
|
|
|
|
| 211 |
no_seg_out = placeholders["no_seg_out"]
|
| 212 |
|
| 213 |
@session_logger.set_uuid_logging
|
| 214 |
+
def inference(
|
| 215 |
+
input_str: str,
|
| 216 |
+
input_image: str | np.ndarray,
|
| 217 |
+
internal_logger: logging = None,
|
| 218 |
+
embedding_key: str = None
|
| 219 |
+
):
|
| 220 |
if internal_logger is None:
|
| 221 |
internal_logger = app_logger
|
| 222 |
|
|
|
|
| 259 |
image_np = cv2.imread(input_image)
|
| 260 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
| 261 |
original_size_list = [image_np.shape[:2]]
|
| 262 |
+
app_logger.debug("start clip_image_processor.preprocess")
|
| 263 |
image_clip = (
|
| 264 |
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
| 265 |
"pixel_values"
|
|
|
|
| 267 |
.unsqueeze(0)
|
| 268 |
.cuda()
|
| 269 |
)
|
| 270 |
+
app_logger.debug("done clip_image_processor.preprocess")
|
| 271 |
internal_logger.info(f"image_clip type: {type(image_clip)}.")
|
| 272 |
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
| 273 |
|
| 274 |
image = transform.apply_image(image_np)
|
| 275 |
resize_list = [image.shape[:2]]
|
| 276 |
|
| 277 |
+
internal_logger.debug(f"starting preprocess image: {type(image_clip)}.")
|
| 278 |
image = (
|
| 279 |
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
| 280 |
.unsqueeze(0)
|
| 281 |
.cuda()
|
| 282 |
)
|
| 283 |
+
internal_logger.info(f"done preprocess image:{type(image)}, image_clip type: {type(image_clip)}.")
|
| 284 |
image = set_image_precision_by_args(image, args_to_parse.precision)
|
| 285 |
|
| 286 |
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
| 287 |
input_ids = input_ids.unsqueeze(0).cuda()
|
| 288 |
|
| 289 |
+
embedding_key = get_hash_array(embedding_key, image, internal_logger)
|
| 290 |
+
internal_logger.info(f"start model evaluation with embedding_key {embedding_key}.")
|
| 291 |
output_ids, pred_masks = model.evaluate(
|
| 292 |
image_clip,
|
| 293 |
image,
|
|
|
|
| 296 |
original_size_list,
|
| 297 |
max_new_tokens=512,
|
| 298 |
tokenizer=tokenizer,
|
| 299 |
+
model_logger=internal_logger,
|
| 300 |
+
embedding_key=embedding_key
|
| 301 |
)
|
| 302 |
internal_logger.info("model evaluation done, start token decoding...")
|
| 303 |
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
|
|
|
| 356 |
)
|
| 357 |
|
| 358 |
|
| 359 |
+
def get_hash_array(embedding_key: str, arr: np.ndarray | torch.Tensor, model_logger: logging):
|
| 360 |
+
from base64 import b64encode
|
| 361 |
+
from hashlib import sha256
|
| 362 |
+
|
| 363 |
+
model_logger.debug(f"embedding_key {embedding_key} is None? {embedding_key is None}.")
|
| 364 |
+
if embedding_key is None:
|
| 365 |
+
img2hash = arr
|
| 366 |
+
if isinstance(arr, torch.Tensor):
|
| 367 |
+
model_logger.debug("images variable is a Tensor, start converting back to numpy")
|
| 368 |
+
img2hash = arr.numpy(force=True)
|
| 369 |
+
model_logger.debug("done Tensor converted back to numpy")
|
| 370 |
+
model_logger.debug("start image hashing")
|
| 371 |
+
img2hash_fn = sha256(img2hash)
|
| 372 |
+
embedding_key = b64encode(img2hash_fn.digest())
|
| 373 |
+
embedding_key = embedding_key.decode("utf-8")
|
| 374 |
+
model_logger.debug(f"done image hashing, now embedding_key is {embedding_key}.")
|
| 375 |
+
return embedding_key
|
| 376 |
+
|
| 377 |
+
|
| 378 |
if __name__ == '__main__':
|
| 379 |
parsed_args = parse_args([])
|
| 380 |
print("arrrrg:", parsed_args)
|
scripts/baremetal_entrypoint.sh
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
|
| 3 |
+
if [ -z "${WORKDIR}" ];
|
| 4 |
+
then
|
| 5 |
+
WORKDIR=$1
|
| 6 |
+
fi
|
| 7 |
+
|
| 8 |
+
if [ -z "${XDG_CACHE_HOME}" ];
|
| 9 |
+
then
|
| 10 |
+
XDG_CACHE_HOME=$HOME/.cache
|
| 11 |
+
fi
|
| 12 |
+
|
| 13 |
+
echo "WORKDIR: ${WORKDIR} ..."
|
| 14 |
+
echo "XDG_CACHE_HOME: ${XDG_CACHE_HOME} ..."
|
| 15 |
+
|
| 16 |
+
cd ${WORKDIR}
|
| 17 |
+
|
| 18 |
+
if [ ! -f "${WORKDIR}/.env_source" ];
|
| 19 |
+
then
|
| 20 |
+
echo "missing ${WORKDIR}/.env_source file, exit now..."
|
| 21 |
+
exit 1
|
| 22 |
+
fi
|
| 23 |
+
|
| 24 |
+
source ${WORKDIR}/.env_source
|
| 25 |
+
echo "FOLDERS_MAP: ${FOLDERS_MAP} ..."
|
| 26 |
+
|
| 27 |
+
which python
|
| 28 |
+
python --version
|
| 29 |
+
python ${WORKDIR}/scripts/create_folders_and_variables_if_not_exists.py
|
| 30 |
+
|
| 31 |
+
cd ${WORKDIR}/static
|
| 32 |
+
npm install -g npm pnpm
|
| 33 |
+
pnpm install
|
| 34 |
+
pnpm build
|
| 35 |
+
pnpm tailwindcss -i ${WORKDIR}/static/src/input.css -o ${WORKDIR}/static/dist/output.css
|
| 36 |
+
cd ${WORKDIR}
|
| 37 |
+
|
| 38 |
+
chmod +x ${WORKDIR}/scripts/entrypoint.sh
|
| 39 |
+
bash ${WORKDIR}/scripts/entrypoint.sh "baremetal"
|
| 40 |
+
|
| 41 |
+
exit 0
|
scripts/create_folders_and_variables_if_not_exists.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def stats_pathname(pathname: Path | str):
|
| 8 |
+
current_pathname = Path(pathname)
|
| 9 |
+
return current_pathname.is_dir()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_folder_if_not_exists(pathname: Path | str):
|
| 13 |
+
current_pathname = Path(pathname)
|
| 14 |
+
try:
|
| 15 |
+
print(f"Pathname exists? {current_pathname.exists()}, That's a folder? {current_pathname.is_dir()}...")
|
| 16 |
+
logging.info(f"Pathname exists? {current_pathname.exists()}, That's a folder? {current_pathname.is_dir()}...")
|
| 17 |
+
current_pathname.unlink(missing_ok=True)
|
| 18 |
+
except PermissionError as pe:
|
| 19 |
+
print(f"permission denied on removing pathname before folder creation:{pe}.")
|
| 20 |
+
logging.error(f"permission denied on removing pathname before folder creation:{pe}.")
|
| 21 |
+
except IsADirectoryError as errdir:
|
| 22 |
+
print(f"that's a directory:{errdir}.")
|
| 23 |
+
logging.error(f"that's a directory:{errdir}.")
|
| 24 |
+
|
| 25 |
+
print(f"Creating pathname: {current_pathname} ...")
|
| 26 |
+
logging.info(f"Creating pathname: {current_pathname} ...")
|
| 27 |
+
current_pathname.mkdir(mode=0o770, parents=True, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
print(f"assertion: pathname exists and is a folder: {current_pathname} ...")
|
| 30 |
+
logging.info(f"assertion: pathname exists and is a folder: {current_pathname} ...")
|
| 31 |
+
assert current_pathname.is_dir()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
if __name__ == '__main__':
|
| 35 |
+
folders_string = os.getenv("FOLDERS_MAP")
|
| 36 |
+
try:
|
| 37 |
+
folders_dict = json.loads(folders_string)
|
| 38 |
+
for folder_env_ref, folder_env_path in folders_dict.items():
|
| 39 |
+
print(f"folder_env_ref:{folder_env_ref}, folder_env_path:{folder_env_path}.")
|
| 40 |
+
logging.info(f"folder_env_ref:{folder_env_ref}, folder_env_path:{folder_env_path}.")
|
| 41 |
+
create_folder_if_not_exists(folder_env_path)
|
| 42 |
+
print("========")
|
| 43 |
+
assert os.getenv(folder_env_ref) == folder_env_path
|
| 44 |
+
except (json.JSONDecodeError, TypeError) as jde:
|
| 45 |
+
print(f"jde:{jde}.")
|
| 46 |
+
logging.error(f"jde:{jde}.")
|
| 47 |
+
print("double check your variables, e.g. for mispelling like 'FOLDER_MAP'...")
|
| 48 |
+
logging.info("double check your variables, e.g. for mispelling like 'FOLDER_MAP' instead than 'FOLDERS_MAP'...")
|
| 49 |
+
for k_env, v_env in dict(os.environ).items():
|
| 50 |
+
print(f"{k_env}, v_env:{v_env}.")
|
| 51 |
+
logging.info(f"{k_env}, v_env:{v_env}.")
|
scripts/entrypoint.sh
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
#!/usr/bin/env bash
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
MPLCONFIGDIR=${XDG_CACHE_HOME}/.cache/matplotlib
|
| 6 |
TRANSFORMERS_CACHE=${XDG_CACHE_HOME}/.cache/transformers
|
| 7 |
FASTAPI_STATIC=${XDG_CACHE_HOME}/static
|
|
@@ -45,13 +49,22 @@ echo "WORKDIR - /var/task"
|
|
| 45 |
ls -l ${WORKDIR}
|
| 46 |
|
| 47 |
echo "XDG_CACHE_HOME - /data"
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
CUDA_VISIBLE_DEVICES=$(nvidia-smi --query-gpu=memory.free,index --format=csv,nounits,noheader | sort -nr | head -1 | awk '{ print $NF }')
|
| 51 |
echo "calculated CUDA_VISIBLE_DEVICES env variable: ${CUDA_VISIBLE_DEVICES}."
|
| 52 |
export CUDA_VISIBLE_DEVICES
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
exit 0
|
|
|
|
| 1 |
#!/usr/bin/env bash
|
| 2 |
|
| 3 |
+
if [ -z "$1" ];
|
| 4 |
+
then
|
| 5 |
+
echo "use no \$1 variable, set WORKDIR and XDG_CACHE_HOME as for docker container mode"
|
| 6 |
+
WORKDIR="/var/task"
|
| 7 |
+
XDG_CACHE_HOME="/data"
|
| 8 |
+
fi
|
| 9 |
MPLCONFIGDIR=${XDG_CACHE_HOME}/.cache/matplotlib
|
| 10 |
TRANSFORMERS_CACHE=${XDG_CACHE_HOME}/.cache/transformers
|
| 11 |
FASTAPI_STATIC=${XDG_CACHE_HOME}/static
|
|
|
|
| 49 |
ls -l ${WORKDIR}
|
| 50 |
|
| 51 |
echo "XDG_CACHE_HOME - /data"
|
| 52 |
+
if [ -z "$1" ];
|
| 53 |
+
then
|
| 54 |
+
echo "use no \$1 variable, show folder ${XDG_CACHE_HOME} content"
|
| 55 |
+
find ${XDG_CACHE_HOME}
|
| 56 |
+
fi
|
| 57 |
|
| 58 |
CUDA_VISIBLE_DEVICES=$(nvidia-smi --query-gpu=memory.free,index --format=csv,nounits,noheader | sort -nr | head -1 | awk '{ print $NF }')
|
| 59 |
echo "calculated CUDA_VISIBLE_DEVICES env variable: ${CUDA_VISIBLE_DEVICES}."
|
| 60 |
export CUDA_VISIBLE_DEVICES
|
| 61 |
|
| 62 |
+
PYTHONFILE="lisa_on_cuda.app.main"
|
| 63 |
+
if [ -z "$1" ];
|
| 64 |
+
then
|
| 65 |
+
PYTHONFILE="app.main"
|
| 66 |
+
fi
|
| 67 |
+
echo "running command 'uvicorn ${PYTHONFILE}:app --host 0.0.0.0 --port 7860'..."
|
| 68 |
+
uvicorn ${PYTHONFILE}:app --host 0.0.0.0 --port 7860
|
| 69 |
|
| 70 |
exit 0
|