[feat] use post body as input
Browse files- .gitignore +2 -1
- dockerfiles/dockerfile-lambda-fastsam-api +1 -0
- dockerfiles/dockerfile-lambda-gdal-runner +1 -0
- events/payload_point.json +11 -0
- events/payload_point_colico.json +11 -0
- events/payload_rectangle.json +10 -0
- requirements.txt +2 -2
- requirements_dev.txt +2 -2
- src/app.py +41 -10
- src/prediction_api/predictors.py +80 -72
.gitignore
CHANGED
|
@@ -3,4 +3,5 @@ venv/
|
|
| 3 |
__cache__
|
| 4 |
.idea
|
| 5 |
tmp/
|
| 6 |
-
.env*
|
|
|
|
|
|
| 3 |
__cache__
|
| 4 |
.idea
|
| 5 |
tmp/
|
| 6 |
+
.env*
|
| 7 |
+
*.onnx
|
dockerfiles/dockerfile-lambda-fastsam-api
CHANGED
|
@@ -21,6 +21,7 @@ RUN ls -l ${LAMBDA_TASK_ROOT}/models
|
|
| 21 |
RUN python -c "import sys; print(sys.path)"
|
| 22 |
RUN python -c "import osgeo"
|
| 23 |
RUN python -c "import cv2"
|
|
|
|
| 24 |
RUN python -c "import onnxruntime"
|
| 25 |
# RUN python -c "import rasterio"
|
| 26 |
RUN python -c "import awslambdaric"
|
|
|
|
| 21 |
RUN python -c "import sys; print(sys.path)"
|
| 22 |
RUN python -c "import osgeo"
|
| 23 |
RUN python -c "import cv2"
|
| 24 |
+
RUN python -c "import geopandas"
|
| 25 |
RUN python -c "import onnxruntime"
|
| 26 |
# RUN python -c "import rasterio"
|
| 27 |
RUN python -c "import awslambdaric"
|
dockerfiles/dockerfile-lambda-gdal-runner
CHANGED
|
@@ -17,6 +17,7 @@ RUN ls -ld /usr/lib/*linux-gnu/libGL.so* || echo "libGL.so* not found..."
|
|
| 17 |
RUN which python
|
| 18 |
RUN python --version
|
| 19 |
RUN python -m pip install -r ${LAMBDA_TASK_ROOT}/requirements_dev.txt --target ${LAMBDA_TASK_ROOT}
|
|
|
|
| 20 |
# RUN python -m pip install pillow awslambdaric aws-lambda-powertools httpx jmespath --target ${LAMBDA_TASK_ROOT}
|
| 21 |
|
| 22 |
RUN curl -Lo /usr/local/bin/aws-lambda-rie ${RIE}
|
|
|
|
| 17 |
RUN which python
|
| 18 |
RUN python --version
|
| 19 |
RUN python -m pip install -r ${LAMBDA_TASK_ROOT}/requirements_dev.txt --target ${LAMBDA_TASK_ROOT}
|
| 20 |
+
RUN python -c "import sys;print(sys.path)"
|
| 21 |
# RUN python -m pip install pillow awslambdaric aws-lambda-powertools httpx jmespath --target ${LAMBDA_TASK_ROOT}
|
| 22 |
|
| 23 |
RUN curl -Lo /usr/local/bin/aws-lambda-rie ${RIE}
|
events/payload_point.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"ne": {"lat": 45.699, "lng": 127.1},
|
| 3 |
+
"sw": {"lat": 30.1, "lng": 148.492},
|
| 4 |
+
"prompt": [{
|
| 5 |
+
"type": "point",
|
| 6 |
+
"data": [500, 600],
|
| 7 |
+
"label": 0
|
| 8 |
+
}],
|
| 9 |
+
"zoom": 6,
|
| 10 |
+
"source_type": "Satellite"
|
| 11 |
+
}
|
events/payload_point_colico.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"ne": {"lat": 46.1618799417681, "lng": 9.43905830383301},
|
| 3 |
+
"sw": {"lat": 46.12584245997462, "lng": 9.344301223754885},
|
| 4 |
+
"prompt": [{
|
| 5 |
+
"type": "point",
|
| 6 |
+
"data": [500, 600],
|
| 7 |
+
"label": 0
|
| 8 |
+
}],
|
| 9 |
+
"zoom": 14,
|
| 10 |
+
"source_type": "Satellite"
|
| 11 |
+
}
|
events/payload_rectangle.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"ne": {"lat": 45.699, "lng": 127.1},
|
| 3 |
+
"sw": {"lat": 30.1, "lng": 148.492},
|
| 4 |
+
"prompt": [{
|
| 5 |
+
"type": "rectangle",
|
| 6 |
+
"data": [400, 460, 524, 628]
|
| 7 |
+
}],
|
| 8 |
+
"zoom": 6,
|
| 9 |
+
"source_type": "Satellite"
|
| 10 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
aws-lambda-powertools
|
| 2 |
awslambdaric
|
| 3 |
bson
|
|
|
|
| 4 |
httpx
|
| 5 |
jmespath
|
| 6 |
numpy
|
| 7 |
onnxruntime
|
| 8 |
opencv-python
|
| 9 |
pillow
|
| 10 |
-
rasterio
|
| 11 |
-
geopandas
|
|
|
|
| 1 |
aws-lambda-powertools
|
| 2 |
awslambdaric
|
| 3 |
bson
|
| 4 |
+
geopandas
|
| 5 |
httpx
|
| 6 |
jmespath
|
| 7 |
numpy
|
| 8 |
onnxruntime
|
| 9 |
opencv-python
|
| 10 |
pillow
|
| 11 |
+
rasterio
|
|
|
requirements_dev.txt
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
aws-lambda-powertools
|
| 2 |
awslambdaric
|
| 3 |
bson
|
|
|
|
| 4 |
httpx
|
| 5 |
jmespath
|
| 6 |
numpy
|
| 7 |
onnxruntime
|
| 8 |
opencv-python
|
| 9 |
pillow
|
| 10 |
-
rasterio
|
| 11 |
-
geopandas
|
|
|
|
| 1 |
aws-lambda-powertools
|
| 2 |
awslambdaric
|
| 3 |
bson
|
| 4 |
+
geopandas
|
| 5 |
httpx
|
| 6 |
jmespath
|
| 7 |
numpy
|
| 8 |
onnxruntime
|
| 9 |
opencv-python
|
| 10 |
pillow
|
| 11 |
+
rasterio
|
|
|
src/app.py
CHANGED
|
@@ -2,12 +2,14 @@ import json
|
|
| 2 |
import time
|
| 3 |
from http import HTTPStatus
|
| 4 |
from typing import Dict
|
|
|
|
| 5 |
from aws_lambda_powertools.event_handler import content_types
|
| 6 |
from aws_lambda_powertools.utilities.typing import LambdaContext
|
| 7 |
|
| 8 |
from src import app_logger
|
| 9 |
from src.prediction_api.predictors import samexporter_predict
|
| 10 |
from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def get_response(status: int, start_time: float, request_id: str, response_body: Dict = None) -> str:
|
|
@@ -39,6 +41,24 @@ def get_response(status: int, start_time: float, request_id: str, response_body:
|
|
| 39 |
return json.dumps(response)
|
| 40 |
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def lambda_handler(event: dict, context: LambdaContext):
|
| 43 |
app_logger.info(f"start with aws_request_id:{context.aws_request_id}.")
|
| 44 |
start_time = time.time()
|
|
@@ -51,19 +71,30 @@ def lambda_handler(event: dict, context: LambdaContext):
|
|
| 51 |
app_logger.info(f"context:{context}...")
|
| 52 |
|
| 53 |
try:
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
app_logger.info(f"body_response::output:{body_response}.")
|
| 61 |
response = get_response(HTTPStatus.OK.value, start_time, context.aws_request_id, body_response)
|
| 62 |
-
except Exception as
|
| 63 |
-
app_logger.error(f"
|
| 64 |
response = get_response(HTTPStatus.UNPROCESSABLE_ENTITY.value, start_time, context.aws_request_id, {})
|
| 65 |
-
except Exception as
|
| 66 |
-
app_logger.error(f"
|
| 67 |
response = get_response(HTTPStatus.INTERNAL_SERVER_ERROR.value, start_time, context.aws_request_id, {})
|
| 68 |
|
| 69 |
app_logger.info(f"response_dumped:{response}...")
|
|
|
|
| 2 |
import time
|
| 3 |
from http import HTTPStatus
|
| 4 |
from typing import Dict
|
| 5 |
+
|
| 6 |
from aws_lambda_powertools.event_handler import content_types
|
| 7 |
from aws_lambda_powertools.utilities.typing import LambdaContext
|
| 8 |
|
| 9 |
from src import app_logger
|
| 10 |
from src.prediction_api.predictors import samexporter_predict
|
| 11 |
from src.utilities.constants import CUSTOM_RESPONSE_MESSAGES
|
| 12 |
+
from src.utilities.utilities import base64_decode
|
| 13 |
|
| 14 |
|
| 15 |
def get_response(status: int, start_time: float, request_id: str, response_body: Dict = None) -> str:
|
|
|
|
| 41 |
return json.dumps(response)
|
| 42 |
|
| 43 |
|
| 44 |
+
def get_parsed_bbox_points(request_input: Dict) -> Dict:
|
| 45 |
+
app_logger.info(f"try to parsing input request {request_input}...")
|
| 46 |
+
ne = request_input["ne"]
|
| 47 |
+
sw = request_input["sw"]
|
| 48 |
+
bbox = [
|
| 49 |
+
[float(ne["lat"]), float(ne["lng"])],
|
| 50 |
+
[float(sw["lat"]), float(sw["lng"])]
|
| 51 |
+
]
|
| 52 |
+
app_logger.info(f"bbox {bbox}.")
|
| 53 |
+
|
| 54 |
+
app_logger.info(f"unpacking {request_input}...")
|
| 55 |
+
return {
|
| 56 |
+
"bbox": bbox,
|
| 57 |
+
"prompt": request_input["prompt"],
|
| 58 |
+
"zoom": int(request_input["zoom"])
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
|
| 62 |
def lambda_handler(event: dict, context: LambdaContext):
|
| 63 |
app_logger.info(f"start with aws_request_id:{context.aws_request_id}.")
|
| 64 |
start_time = time.time()
|
|
|
|
| 71 |
app_logger.info(f"context:{context}...")
|
| 72 |
|
| 73 |
try:
|
| 74 |
+
body = event["body"]
|
| 75 |
+
except Exception as e_constants1:
|
| 76 |
+
app_logger.error(f"e_constants1:{e_constants1}.")
|
| 77 |
+
body = event
|
| 78 |
+
|
| 79 |
+
app_logger.info(f"body: {type(body)}, {body}...")
|
| 80 |
+
|
| 81 |
+
if isinstance(body, str):
|
| 82 |
+
body_decoded_str = base64_decode(body)
|
| 83 |
+
app_logger.info(f"body_decoded_str: {type(body_decoded_str)}, {body_decoded_str}...")
|
| 84 |
+
body = json.loads(body_decoded_str)
|
| 85 |
+
|
| 86 |
+
app_logger.info(f"body:{body}...")
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
body_request = get_parsed_bbox_points(body)
|
| 90 |
+
body_response = samexporter_predict(body_request["bbox"], body_request["prompt"], body_request["zoom"])
|
| 91 |
app_logger.info(f"body_response::output:{body_response}.")
|
| 92 |
response = get_response(HTTPStatus.OK.value, start_time, context.aws_request_id, body_response)
|
| 93 |
+
except Exception as ex2:
|
| 94 |
+
app_logger.error(f"exception2:{ex2}.")
|
| 95 |
response = get_response(HTTPStatus.UNPROCESSABLE_ENTITY.value, start_time, context.aws_request_id, {})
|
| 96 |
+
except Exception as ex1:
|
| 97 |
+
app_logger.error(f"exception1:{ex1}.")
|
| 98 |
response = get_response(HTTPStatus.INTERNAL_SERVER_ERROR.value, start_time, context.aws_request_id, {})
|
| 99 |
|
| 100 |
app_logger.info(f"response_dumped:{response}...")
|
src/prediction_api/predictors.py
CHANGED
|
@@ -1,30 +1,35 @@
|
|
| 1 |
# Press the green button in the gutter to run the script.
|
| 2 |
-
import os
|
| 3 |
-
from typing import List
|
| 4 |
-
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
|
| 7 |
from src import app_logger, MODEL_FOLDER
|
| 8 |
from src.io.tms2geotiff import download_extent
|
| 9 |
from src.prediction_api.sam_onnx import SegmentAnythingONNX
|
| 10 |
-
from src.utilities.constants import
|
| 11 |
from src.utilities.serialize import serialize
|
| 12 |
from src.utilities.type_hints import input_float_tuples
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
def zip_arrays(arr1, arr2):
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
def load_affine_transformation_from_matrix(matrix_source_coeffs: List):
|
|
@@ -41,68 +46,71 @@ def load_affine_transformation_from_matrix(matrix_source_coeffs: List):
|
|
| 41 |
app_logger.error(f"exception:{e}, check https://github.com/rasterio/affine project for updates")
|
| 42 |
|
| 43 |
|
| 44 |
-
def samexporter_predict(bbox: input_float_tuples, prompt: list[dict], zoom: float = ZOOM) -> dict:
|
| 45 |
-
import tempfile
|
| 46 |
-
|
| 47 |
try:
|
| 48 |
from rasterio.features import shapes
|
| 49 |
from geopandas import GeoDataFrame
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
app_logger.info(f"start download_extent using bbox:{bbox}, type:{type(bbox)}, download image...")
|
| 55 |
-
|
| 56 |
-
pt0 = bbox[0]
|
| 57 |
-
pt1 = bbox[1]
|
| 58 |
-
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom)
|
| 59 |
-
|
| 60 |
-
app_logger.info(f"img type {type(img)}, matrix type {type(matrix)}.")
|
| 61 |
-
app_logger.info(f"matrix values: {serialize(matrix)}.")
|
| 62 |
-
np_img = np.array(img)
|
| 63 |
-
app_logger.info(f"np_img type {type(np_img)}.")
|
| 64 |
-
app_logger.info(f"np_img dtype {np_img.dtype}, shape {np_img.shape}.")
|
| 65 |
-
app_logger.info(f"geotiff created with size/shape {img.size} and transform matrix {str(matrix)}, start to initialize SamGeo instance:")
|
| 66 |
-
app_logger.info(f"use ENCODER model {MODEL_ENCODER_NAME} from {MODEL_FOLDER})...")
|
| 67 |
-
app_logger.info(f"use DECODER model {MODEL_DECODER_NAME} from {MODEL_FOLDER})...")
|
| 68 |
-
|
| 69 |
-
model = SegmentAnythingONNX(
|
| 70 |
encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME,
|
| 71 |
decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME
|
| 72 |
)
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
app_logger.info(f"
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
except ImportError as e:
|
| 108 |
app_logger.error(f"Error trying import module:{e}.")
|
|
|
|
| 1 |
# Press the green button in the gutter to run the script.
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
+
from typing import List
|
| 4 |
|
| 5 |
from src import app_logger, MODEL_FOLDER
|
| 6 |
from src.io.tms2geotiff import download_extent
|
| 7 |
from src.prediction_api.sam_onnx import SegmentAnythingONNX
|
| 8 |
+
from src.utilities.constants import MODEL_ENCODER_NAME, ZOOM, DEFAULT_TMS, MODEL_DECODER_NAME
|
| 9 |
from src.utilities.serialize import serialize
|
| 10 |
from src.utilities.type_hints import input_float_tuples
|
| 11 |
|
| 12 |
|
| 13 |
+
models_dict = {"fastsam": {"instance": None}}
|
| 14 |
+
|
| 15 |
+
|
| 16 |
def zip_arrays(arr1, arr2):
|
| 17 |
+
try:
|
| 18 |
+
arr1_list = arr1.tolist()
|
| 19 |
+
arr2_list = arr2.tolist()
|
| 20 |
+
# return {serialize(k): serialize(v) for k, v in zip(arr1_list, arr2_list)}
|
| 21 |
+
d = {}
|
| 22 |
+
for n1, n2 in zip(arr1_list, arr2_list):
|
| 23 |
+
app_logger.info(f"n1:{n1}, type {type(n1)}, n2:{n2}, type {type(n2)}.")
|
| 24 |
+
n1f = str(n1)
|
| 25 |
+
n2f = str(n2)
|
| 26 |
+
app_logger.info(f"n1:{n1}=>{n1f}, n2:{n2}=>{n2f}.")
|
| 27 |
+
d[n1f] = n2f
|
| 28 |
+
app_logger.info(f"zipped dict:{d}.")
|
| 29 |
+
return d
|
| 30 |
+
except Exception as e_zip_arrays:
|
| 31 |
+
app_logger.info(f"exception zip_arrays:{e_zip_arrays}.")
|
| 32 |
+
return {}
|
| 33 |
|
| 34 |
|
| 35 |
def load_affine_transformation_from_matrix(matrix_source_coeffs: List):
|
|
|
|
| 46 |
app_logger.error(f"exception:{e}, check https://github.com/rasterio/affine project for updates")
|
| 47 |
|
| 48 |
|
| 49 |
+
def samexporter_predict(bbox: input_float_tuples, prompt: list[dict], zoom: float = ZOOM, model_name: str = "fastsam") -> dict:
|
|
|
|
|
|
|
| 50 |
try:
|
| 51 |
from rasterio.features import shapes
|
| 52 |
from geopandas import GeoDataFrame
|
| 53 |
|
| 54 |
+
if models_dict[model_name]["instance"] is None:
|
| 55 |
+
app_logger.info(f"missing instance model {model_name}, instantiating it now")
|
| 56 |
+
model_instance = SegmentAnythingONNX(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
encoder_model_path=MODEL_FOLDER / MODEL_ENCODER_NAME,
|
| 58 |
decoder_model_path=MODEL_FOLDER / MODEL_DECODER_NAME
|
| 59 |
)
|
| 60 |
+
models_dict[model_name]["instance"] = model_instance
|
| 61 |
+
app_logger.info(f"using a {model_name} instance model...")
|
| 62 |
+
models_instance = models_dict[model_name]["instance"]
|
| 63 |
+
|
| 64 |
+
for coord in bbox:
|
| 65 |
+
app_logger.info(f"bbox coord:{coord}, type:{type(coord)}.")
|
| 66 |
+
app_logger.info(f"start download_extent using bbox:{bbox}, type:{type(bbox)}, download image...")
|
| 67 |
+
|
| 68 |
+
pt0 = bbox[0]
|
| 69 |
+
pt1 = bbox[1]
|
| 70 |
+
img, matrix = download_extent(DEFAULT_TMS, pt0[0], pt0[1], pt1[0], pt1[1], zoom)
|
| 71 |
+
|
| 72 |
+
app_logger.info(f"img type {type(img)}, matrix type {type(matrix)}.")
|
| 73 |
+
app_logger.info(f"matrix values: {serialize(matrix)}.")
|
| 74 |
+
np_img = np.array(img)
|
| 75 |
+
app_logger.info(f"np_img type {type(np_img)}.")
|
| 76 |
+
app_logger.info(f"np_img dtype {np_img.dtype}, shape {np_img.shape}.")
|
| 77 |
+
app_logger.info(f"geotiff created with size/shape {img.size} and transform matrix {str(matrix)}, start to initialize SamGeo instance:")
|
| 78 |
+
app_logger.info(f"use fastsam_model, ENCODER model {MODEL_ENCODER_NAME} and {MODEL_DECODER_NAME} from {MODEL_FOLDER})...")
|
| 79 |
+
|
| 80 |
+
app_logger.info(f"model instantiated, creating embedding...")
|
| 81 |
+
embedding = models_instance.encode(np_img)
|
| 82 |
+
app_logger.info(f"embedding created, running predict_masks...")
|
| 83 |
+
prediction_masks = models_instance.predict_masks(embedding, prompt)
|
| 84 |
+
app_logger.info(f"predict_masks terminated")
|
| 85 |
+
app_logger.info(f"prediction masks shape:{prediction_masks.shape}, {prediction_masks.dtype}.")
|
| 86 |
+
|
| 87 |
+
mask = np.zeros((prediction_masks.shape[2], prediction_masks.shape[3]), dtype=np.uint8)
|
| 88 |
+
for m in prediction_masks[0, :, :, :]:
|
| 89 |
+
mask[m > 0.0] = 255
|
| 90 |
+
|
| 91 |
+
mask_unique_values, mask_unique_values_count = serialize(np.unique(mask, return_counts=True))
|
| 92 |
+
app_logger.info(f"mask_unique_values:{mask_unique_values}.")
|
| 93 |
+
app_logger.info(f"mask_unique_values_count:{mask_unique_values_count}.")
|
| 94 |
+
|
| 95 |
+
transform = load_affine_transformation_from_matrix(matrix)
|
| 96 |
+
app_logger.info(f"image/geojson origin matrix:{matrix}, transform:{transform}.")
|
| 97 |
+
shapes_generator = ({
|
| 98 |
+
'properties': {'raster_val': v}, 'geometry': s}
|
| 99 |
+
for i, (s, v)
|
| 100 |
+
in enumerate(shapes(mask, mask=mask, transform=transform))
|
| 101 |
+
)
|
| 102 |
+
shapes_list = list(shapes_generator)
|
| 103 |
+
app_logger.info(f"created {len(shapes_list)} polygons.")
|
| 104 |
+
gpd_polygonized_raster = GeoDataFrame.from_features(shapes_list, crs="EPSG:3857")
|
| 105 |
+
app_logger.info(f"created a GeoDataFrame...")
|
| 106 |
+
geojson = gpd_polygonized_raster.to_json(to_wgs84=True)
|
| 107 |
+
app_logger.info(f"created geojson...")
|
| 108 |
+
|
| 109 |
+
return {
|
| 110 |
+
"geojson": geojson,
|
| 111 |
+
"n_shapes_geojson": len(shapes_list),
|
| 112 |
+
"n_predictions": len(prediction_masks),
|
| 113 |
+
# "n_pixels_predictions": zip_arrays(mask_unique_values, mask_unique_values_count),
|
| 114 |
+
}
|
| 115 |
except ImportError as e:
|
| 116 |
app_logger.error(f"Error trying import module:{e}.")
|