Spaces:
Running
Running
alexander-hm
commited on
Commit
·
d66ac69
1
Parent(s):
1dd90bb
Add application file
Browse files- app.py +101 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app_pure_rag.py
|
| 2 |
+
import numpy as np
|
| 3 |
+
import faiss
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
|
| 8 |
+
# --- Load and Prepare Data ---
|
| 9 |
+
with open("gen_agents.txt", "r", encoding="utf-8") as f:
|
| 10 |
+
full_text = f.read()
|
| 11 |
+
|
| 12 |
+
# Split text into passages
|
| 13 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=512, chunk_overlap=20)
|
| 14 |
+
docs = text_splitter.create_documents([full_text])
|
| 15 |
+
passages = [doc.page_content for doc in docs]
|
| 16 |
+
|
| 17 |
+
# Initialize embedder and build FAISS index
|
| 18 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 19 |
+
passage_embeddings = embedder.encode(passages, convert_to_tensor=False, show_progress_bar=True)
|
| 20 |
+
passage_embeddings = np.array(passage_embeddings).astype("float32")
|
| 21 |
+
d = passage_embeddings.shape[1]
|
| 22 |
+
index = faiss.IndexFlatL2(d)
|
| 23 |
+
index.add(passage_embeddings)
|
| 24 |
+
|
| 25 |
+
# --- Provided Functions ---
|
| 26 |
+
def retrieve_passages(query, embedder, index, passages, top_k=3):
|
| 27 |
+
"""
|
| 28 |
+
Retrieve the top-k most relevant passages based on the query.
|
| 29 |
+
"""
|
| 30 |
+
query_embedding = embedder.encode([query], convert_to_tensor=False)
|
| 31 |
+
query_embedding = np.array(query_embedding).astype('float32')
|
| 32 |
+
distances, indices = index.search(query_embedding, top_k)
|
| 33 |
+
retrieved = [passages[i] for i in indices[0]]
|
| 34 |
+
return retrieved
|
| 35 |
+
|
| 36 |
+
# --- Gradio App Function ---
|
| 37 |
+
def get_pure_rag_output(query):
|
| 38 |
+
retrieved = retrieve_passages(query, embedder, index, passages, top_k=3)
|
| 39 |
+
rag_text = "\n".join([f"Passage {i+1}: {p}" for i, p in enumerate(retrieved)])
|
| 40 |
+
# Wrap text in a styled div
|
| 41 |
+
return f"<div style='white-space: pre-wrap;'>{rag_text}</div>"
|
| 42 |
+
|
| 43 |
+
def clear_output():
|
| 44 |
+
return ""
|
| 45 |
+
|
| 46 |
+
# --- Custom CSS for a ChatGPT-like Dark Theme ---
|
| 47 |
+
custom_css = """
|
| 48 |
+
body {
|
| 49 |
+
background-color: #343541 !important;
|
| 50 |
+
color: #ECECEC !important;
|
| 51 |
+
margin: 0;
|
| 52 |
+
padding: 0;
|
| 53 |
+
font-family: 'Inter', sans-serif;
|
| 54 |
+
}
|
| 55 |
+
#container {
|
| 56 |
+
max-width: 900px;
|
| 57 |
+
margin: 0 auto;
|
| 58 |
+
padding: 20px;
|
| 59 |
+
}
|
| 60 |
+
label {
|
| 61 |
+
color: #ECECEC;
|
| 62 |
+
font-weight: 600;
|
| 63 |
+
}
|
| 64 |
+
textarea, input {
|
| 65 |
+
background-color: #40414F;
|
| 66 |
+
color: #ECECEC;
|
| 67 |
+
border: 1px solid #565869;
|
| 68 |
+
}
|
| 69 |
+
button {
|
| 70 |
+
background-color: #565869;
|
| 71 |
+
color: #ECECEC;
|
| 72 |
+
border: none;
|
| 73 |
+
font-weight: 600;
|
| 74 |
+
transition: background-color 0.2s ease;
|
| 75 |
+
}
|
| 76 |
+
button:hover {
|
| 77 |
+
background-color: #6e7283;
|
| 78 |
+
}
|
| 79 |
+
.output-box {
|
| 80 |
+
border: 1px solid #565869;
|
| 81 |
+
border-radius: 4px;
|
| 82 |
+
padding: 10px;
|
| 83 |
+
margin-top: 8px;
|
| 84 |
+
background-color: #40414F;
|
| 85 |
+
}
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
# --- Build Gradio Interface ---
|
| 89 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 90 |
+
with gr.Column(elem_id="container"):
|
| 91 |
+
gr.Markdown("## Pure RAG Output\nDisplays the retrieved passages from the corpus.")
|
| 92 |
+
query_input = gr.Textbox(label="Query", placeholder="Enter your query here...", lines=1)
|
| 93 |
+
with gr.Column():
|
| 94 |
+
submit_button = gr.Button("Submit")
|
| 95 |
+
clear_button = gr.Button("Clear")
|
| 96 |
+
output_box = gr.HTML(label="Retrieved Passages", elem_classes="output-box")
|
| 97 |
+
|
| 98 |
+
submit_button.click(fn=get_pure_rag_output, inputs=query_input, outputs=output_box)
|
| 99 |
+
clear_button.click(fn=clear_output, inputs=[], outputs=output_box)
|
| 100 |
+
|
| 101 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
openai
|
| 3 |
+
faiss-cpu
|
| 4 |
+
sentence-transformers
|
| 5 |
+
langchain
|
| 6 |
+
numpy
|