Spaces:
Runtime error
Runtime error
Commit
·
8be4fd9
1
Parent(s):
80b5399
feat: Update app
Browse files
app.py
CHANGED
|
@@ -1,190 +1,245 @@
|
|
| 1 |
"""Gradio app that showcases Scandinavian zero-shot text classification models."""
|
| 2 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import pipeline
|
| 5 |
from luga import language as detect_language
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
Note that the models will most likely *not* work as well as a finetuned model on your
|
| 19 |
-
specific data, but they can be used as a starting point for your own classification
|
| 20 |
-
task ✨
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
Also, be patient, as this demo is running on a CPU!"""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def classification(task: str, doc: str) -> str:
|
| 27 |
"""Classify text into categories.
|
| 28 |
|
| 29 |
Args:
|
| 30 |
-
task (str):
|
| 31 |
-
Task to perform.
|
| 32 |
doc (str):
|
| 33 |
Text to classify.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
Returns:
|
| 36 |
-
str:
|
| 37 |
-
The predicted label.
|
| 38 |
"""
|
| 39 |
# Detect the language of the text
|
| 40 |
language = detect_language(doc.replace('\n', ' ')).name
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
if language == "sv"
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
else:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
# If the task is sentiment, classify the text into positive, negative or neutral
|
| 49 |
-
if task == "Sentiment classification":
|
| 50 |
-
if language == "sv":
|
| 51 |
-
hypothesis_template = "Detta exempel är {}."
|
| 52 |
-
candidate_labels = ["positivt", "negativt", "neutralt"]
|
| 53 |
-
elif language == "no":
|
| 54 |
-
hypothesis_template = "Dette eksemplet er {}."
|
| 55 |
-
candidate_labels = ["positivt", "negativt", "nøytralt"]
|
| 56 |
-
else:
|
| 57 |
-
hypothesis_template = "Dette eksempel er {}."
|
| 58 |
-
candidate_labels = ["positivt", "negativt", "neutralt"]
|
| 59 |
-
|
| 60 |
-
# Else if the task is topic, classify the text into a topic
|
| 61 |
-
elif task == "News topic classification":
|
| 62 |
-
if language == "sv":
|
| 63 |
-
hypothesis_template = "Detta exempel handlar om {}."
|
| 64 |
-
candidate_labels = [
|
| 65 |
-
"krig",
|
| 66 |
-
"politik",
|
| 67 |
-
"utbildning",
|
| 68 |
-
"hälsa",
|
| 69 |
-
"ekonomi",
|
| 70 |
-
"mode",
|
| 71 |
-
"sport",
|
| 72 |
-
]
|
| 73 |
-
elif language == "no":
|
| 74 |
-
hypothesis_template = "Dette eksemplet handler om {}."
|
| 75 |
-
candidate_labels = [
|
| 76 |
-
"krig",
|
| 77 |
-
"politikk",
|
| 78 |
-
"utdanning",
|
| 79 |
-
"helse",
|
| 80 |
-
"økonomi",
|
| 81 |
-
"mote",
|
| 82 |
-
"sport",
|
| 83 |
-
]
|
| 84 |
-
else:
|
| 85 |
-
hypothesis_template = "Denne nyhedsartikel handler primært om {}."
|
| 86 |
-
candidate_labels = [
|
| 87 |
-
"krig",
|
| 88 |
-
"politik",
|
| 89 |
-
"uddannelse",
|
| 90 |
-
"sundhed",
|
| 91 |
-
"økonomi",
|
| 92 |
-
"mode",
|
| 93 |
-
"sport",
|
| 94 |
-
]
|
| 95 |
-
|
| 96 |
-
# Else if the task is spam detection, classify the text into spam or not spam
|
| 97 |
-
elif task == "Spam detection":
|
| 98 |
-
if language == "sv":
|
| 99 |
-
hypothesis_template = "Det här e-postmeddelandet ser {}."
|
| 100 |
-
candidate_labels = {
|
| 101 |
-
"ut som ett skräppostmeddelande": "Spam",
|
| 102 |
-
"inte ut som ett skräppostmeddelande": "Inte spam",
|
| 103 |
-
}
|
| 104 |
-
elif language == "no":
|
| 105 |
-
hypothesis_template = "Denne e-posten ser {}."
|
| 106 |
-
candidate_labels = {
|
| 107 |
-
"ut som en spam-e-post": "Spam",
|
| 108 |
-
"ikke ut som en spam-e-post": "Ikke spam",
|
| 109 |
-
}
|
| 110 |
-
else:
|
| 111 |
-
hypothesis_template = "Denne e-mail ligner {}."
|
| 112 |
-
candidate_labels = {
|
| 113 |
-
"en spam e-mail": "Spam",
|
| 114 |
-
"ikke en spam e-mail": "Ikke spam",
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
# Else if the task is product feedback detection, classify the text into product
|
| 118 |
-
# feedback or not product feedback
|
| 119 |
-
elif task == "Product feedback detection":
|
| 120 |
-
if language == "sv":
|
| 121 |
-
hypothesis_template = "Den här kommentaren är {}."
|
| 122 |
-
candidate_labels = {
|
| 123 |
-
"en recension av en produkt": "Produktfeedback",
|
| 124 |
-
"inte en recension av en produkt": "Inte produktfeedback",
|
| 125 |
-
}
|
| 126 |
-
elif language == "no":
|
| 127 |
-
hypothesis_template = "Denne kommentaren er {}."
|
| 128 |
-
candidate_labels = {
|
| 129 |
-
"en anmeldelse av et produkt": "Produkttilbakemelding",
|
| 130 |
-
"ikke en anmeldelse av et produkt": "Ikke produkttilbakemelding",
|
| 131 |
-
}
|
| 132 |
-
else:
|
| 133 |
-
hypothesis_template = "Denne kommentar er {}."
|
| 134 |
-
candidate_labels = {
|
| 135 |
-
"en anmeldelse af et produkt": "Produktfeedback",
|
| 136 |
-
"ikke en anmeldelse af et produkt": "Ikke produktfeedback",
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
# Else the task is not supported, so raise an error
|
| 140 |
-
else:
|
| 141 |
-
raise ValueError(f"Task {task} not supported.")
|
| 142 |
-
|
| 143 |
-
# If `candidate_labels` is a list then convert it to a dictionary, where the keys
|
| 144 |
-
# are the entries in the list and the values are the keys capitalized
|
| 145 |
-
if isinstance(candidate_labels, list):
|
| 146 |
-
candidate_labels = {label: label.capitalize() for label in candidate_labels}
|
| 147 |
|
| 148 |
# Run the classifier on the text
|
| 149 |
result = classifier(
|
| 150 |
doc,
|
| 151 |
-
candidate_labels=
|
| 152 |
hypothesis_template=hypothesis_template,
|
| 153 |
)
|
| 154 |
|
| 155 |
print(result)
|
| 156 |
|
| 157 |
# Return the predicted label
|
| 158 |
-
return (
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
)
|
| 162 |
|
| 163 |
-
# Create
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Gradio app that showcases Scandinavian zero-shot text classification models."""
|
| 2 |
|
| 3 |
+
from typing import Dict, Tuple
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import pipeline
|
| 6 |
from luga import language as detect_language
|
| 7 |
+
import re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def classification(
|
| 11 |
+
doc: str,
|
| 12 |
+
da_hypothesis_template: str,
|
| 13 |
+
da_candidate_labels: str,
|
| 14 |
+
sv_hypothesis_template: str,
|
| 15 |
+
sv_candidate_labels: str,
|
| 16 |
+
no_hypothesis_template: str,
|
| 17 |
+
no_candidate_labels: str,
|
| 18 |
+
) -> Dict[str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"""Classify text into categories.
|
| 20 |
|
| 21 |
Args:
|
|
|
|
|
|
|
| 22 |
doc (str):
|
| 23 |
Text to classify.
|
| 24 |
+
da_hypothesis_template (str):
|
| 25 |
+
Template for the hypothesis to be used for Danish classification.
|
| 26 |
+
da_candidate_labels (str):
|
| 27 |
+
Comma-separated list of candidate labels for Danish classification.
|
| 28 |
+
sv_hypothesis_template (str):
|
| 29 |
+
Template for the hypothesis to be used for Swedish classification.
|
| 30 |
+
sv_candidate_labels (str):
|
| 31 |
+
Comma-separated list of candidate labels for Swedish classification.
|
| 32 |
+
no_hypothesis_template (str):
|
| 33 |
+
Template for the hypothesis to be used for Norwegian classification.
|
| 34 |
+
no_candidate_labels (str):
|
| 35 |
+
Comma-separated list of candidate labels for Norwegian classification.
|
| 36 |
|
| 37 |
Returns:
|
| 38 |
+
dict of str to float:
|
| 39 |
+
The predicted label and the confidence score.
|
| 40 |
"""
|
| 41 |
# Detect the language of the text
|
| 42 |
language = detect_language(doc.replace('\n', ' ')).name
|
| 43 |
|
| 44 |
+
# Set the hypothesis template and candidate labels based on the detected language
|
| 45 |
+
if language == "sv":
|
| 46 |
+
hypothesis_template = sv_hypothesis_template
|
| 47 |
+
candidate_labels = re.split(r', *', sv_candidate_labels)
|
| 48 |
+
elif language == "no":
|
| 49 |
+
hypothesis_template = no_hypothesis_template
|
| 50 |
+
candidate_labels = re.split(r', *', no_candidate_labels)
|
| 51 |
else:
|
| 52 |
+
hypothesis_template = da_hypothesis_template
|
| 53 |
+
candidate_labels = re.split(r', *', da_candidate_labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Run the classifier on the text
|
| 56 |
result = classifier(
|
| 57 |
doc,
|
| 58 |
+
candidate_labels=candidate_labels,
|
| 59 |
hypothesis_template=hypothesis_template,
|
| 60 |
)
|
| 61 |
|
| 62 |
print(result)
|
| 63 |
|
| 64 |
# Return the predicted label
|
| 65 |
+
return {lbl: score for lbl, score in zip(result["labels"], result["scores"])}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def main():
|
| 69 |
+
|
| 70 |
+
# Load the zero-shot classification pipeline
|
| 71 |
+
global classifier
|
| 72 |
+
classifier = pipeline(
|
| 73 |
+
"zero-shot-classification", model="alexandrainst/scandi-nli-large"
|
| 74 |
)
|
| 75 |
|
| 76 |
+
# Create dictionary of descriptions for each task, containing the hypothesis template
|
| 77 |
+
# and candidate labels
|
| 78 |
+
task_configs: Dict[str, Tuple[str, str, str, str, str, str]] = {
|
| 79 |
+
"Sentiment classification": (
|
| 80 |
+
"Dette eksempel er {}.",
|
| 81 |
+
"positivt, negativt, neutralt",
|
| 82 |
+
"Detta exempel är {}.",
|
| 83 |
+
"positivt, negativt, neutralt",
|
| 84 |
+
"Dette eksemplet er {}.",
|
| 85 |
+
"positivt, negativt, nøytralt",
|
| 86 |
+
),
|
| 87 |
+
"News topic classification": (
|
| 88 |
+
"Denne nyhedsartikel handler primært om {}.",
|
| 89 |
+
"krig, politik, uddannelse, sundhed, økonomi, mode, sport",
|
| 90 |
+
"Den här nyhetsartikeln handlar främst om {}.",
|
| 91 |
+
"krig, politik, utbildning, hälsa, ekonomi, mode, sport",
|
| 92 |
+
"Denne nyhetsartikkelen handler først og fremst om {}.",
|
| 93 |
+
"krig, politikk, utdanning, helse, økonomi, mote, sport",
|
| 94 |
+
),
|
| 95 |
+
"Spam detection": (
|
| 96 |
+
"Denne e-mail ligner {}.",
|
| 97 |
+
"en spam e-mail, ikke en spam e-mail",
|
| 98 |
+
"Det här e-postmeddelandet ser {}.",
|
| 99 |
+
"ut som ett skräppostmeddelande, inte ut som ett skräppostmeddelande",
|
| 100 |
+
"Denne e-posten ser {}.",
|
| 101 |
+
"ut som en spam-e-post, ikke ut som en spam-e-post",
|
| 102 |
+
),
|
| 103 |
+
"Product feedback detection": (
|
| 104 |
+
"Denne kommentar er {}.",
|
| 105 |
+
"en anmeldelse af et produkt, ikke en anmeldelse af et produkt",
|
| 106 |
+
"Den här kommentaren är {}.",
|
| 107 |
+
"en recension av en produkt, inte en recension av en produkt",
|
| 108 |
+
"Denne kommentaren er {}.",
|
| 109 |
+
"en anmeldelse av et produkt, ikke en anmeldelse av et produkt",
|
| 110 |
+
),
|
| 111 |
+
"Define your own task!": (
|
| 112 |
+
"Dette eksempel er {}.",
|
| 113 |
+
"",
|
| 114 |
+
"Detta exempel är {}.",
|
| 115 |
+
"",
|
| 116 |
+
"Dette eksemplet er {}.",
|
| 117 |
+
"",
|
| 118 |
+
),
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
def set_task_setup(task: str) -> Tuple[str, str, str, str, str, str]:
|
| 122 |
+
return task_configs[task]
|
| 123 |
+
|
| 124 |
+
with gr.Blocks() as demo:
|
| 125 |
+
|
| 126 |
+
# Create title and description
|
| 127 |
+
gr.Markdown("# Scandinavian Zero-shot Text Classification")
|
| 128 |
+
gr.Markdown("""
|
| 129 |
+
Classify text in Danish, Swedish or Norwegian into categories, without
|
| 130 |
+
finetuning on any training data!
|
| 131 |
+
|
| 132 |
+
Note that the models will most likely not work as well as a finetuned model
|
| 133 |
+
on your specific data, but they can be used as a starting point for your
|
| 134 |
+
own classification task ✨
|
| 135 |
+
|
| 136 |
+
Also, be patient, as this demo is running on a CPU!
|
| 137 |
+
""")
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
|
| 141 |
+
# Input column
|
| 142 |
+
with gr.Column():
|
| 143 |
+
|
| 144 |
+
# Create a dropdown menu for the task
|
| 145 |
+
dropdown = gr.inputs.Dropdown(
|
| 146 |
+
label="Task",
|
| 147 |
+
choices=[
|
| 148 |
+
"Sentiment classification",
|
| 149 |
+
"News topic classification",
|
| 150 |
+
"Spam detection",
|
| 151 |
+
"Product feedback detection",
|
| 152 |
+
"Define your own task!",
|
| 153 |
+
],
|
| 154 |
+
default="Sentiment classification",
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
with gr.Row(variant="compact"):
|
| 158 |
+
da_hypothesis_template = gr.inputs.Textbox(
|
| 159 |
+
label="Danish hypothesis template",
|
| 160 |
+
default="Dette eksempel er {}.",
|
| 161 |
+
)
|
| 162 |
+
da_candidate_labels = gr.inputs.Textbox(
|
| 163 |
+
label="Danish candidate labels (comma separated)",
|
| 164 |
+
default="positivt, negativt, neutralt",
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Row(variant="compact"):
|
| 168 |
+
sv_hypothesis_template = gr.inputs.Textbox(
|
| 169 |
+
label="Swedish hypothesis template",
|
| 170 |
+
default="Detta exempel är {}.",
|
| 171 |
+
)
|
| 172 |
+
sv_candidate_labels = gr.inputs.Textbox(
|
| 173 |
+
label="Swedish candidate labels (comma separated)",
|
| 174 |
+
default="positivt, negativt, neutralt",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
with gr.Row(variant="compact"):
|
| 178 |
+
no_hypothesis_template = gr.inputs.Textbox(
|
| 179 |
+
label="Norwegian hypothesis template",
|
| 180 |
+
default="Dette eksemplet er {}.",
|
| 181 |
+
)
|
| 182 |
+
no_candidate_labels = gr.inputs.Textbox(
|
| 183 |
+
label="Norwegian candidate labels (comma separated)",
|
| 184 |
+
default="positivt, negativt, nøytralt",
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# When a new task is chosen, update the description
|
| 188 |
+
dropdown.change(
|
| 189 |
+
fn=set_task_setup,
|
| 190 |
+
inputs=dropdown,
|
| 191 |
+
outputs=[
|
| 192 |
+
da_hypothesis_template,
|
| 193 |
+
da_candidate_labels,
|
| 194 |
+
sv_hypothesis_template,
|
| 195 |
+
sv_candidate_labels,
|
| 196 |
+
no_hypothesis_template,
|
| 197 |
+
no_candidate_labels,
|
| 198 |
+
],
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Output column
|
| 202 |
+
with gr.Column():
|
| 203 |
+
|
| 204 |
+
# Create a text box for the input text
|
| 205 |
+
input_textbox = gr.inputs.Textbox(
|
| 206 |
+
label="Input text", default="Jeg er helt vild med fodbolden 😊"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
clear_btn = gr.Button(value="Clear", width=0.5)
|
| 211 |
+
submit_btn = gr.Button(value="Submit", width=0.5, variant="primary")
|
| 212 |
+
|
| 213 |
+
# When the clear button is clicked, clear the input text box
|
| 214 |
+
clear_btn.click(
|
| 215 |
+
fn=lambda _: "", inputs=input_textbox, outputs=input_textbox
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
with gr.Column():
|
| 220 |
+
|
| 221 |
+
# Create output text box
|
| 222 |
+
output_textbox = gr.Label(label="Result")
|
| 223 |
+
|
| 224 |
+
# When the submit button is clicked, run the classifier on the input text
|
| 225 |
+
# and display the result in the output text box
|
| 226 |
+
submit_btn.click(
|
| 227 |
+
fn=classification,
|
| 228 |
+
inputs=[
|
| 229 |
+
input_textbox,
|
| 230 |
+
da_hypothesis_template,
|
| 231 |
+
da_candidate_labels,
|
| 232 |
+
sv_hypothesis_template,
|
| 233 |
+
sv_candidate_labels,
|
| 234 |
+
no_hypothesis_template,
|
| 235 |
+
no_candidate_labels,
|
| 236 |
+
],
|
| 237 |
+
outputs=output_textbox,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Run the app
|
| 241 |
+
demo.launch()
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
if __name__ == "__main__":
|
| 245 |
+
main()
|