Spaces:
Runtime error
Runtime error
Commit
·
af97119
1
Parent(s):
1a75433
feat: Update deps, sort out deprecation warnings
Browse files- app.py +106 -92
- requirements.txt +5 -2
app.py
CHANGED
|
@@ -2,75 +2,30 @@
|
|
| 2 |
|
| 3 |
from typing import Dict, Tuple
|
| 4 |
import gradio as gr
|
| 5 |
-
from
|
|
|
|
|
|
|
| 6 |
from luga import language as detect_language
|
|
|
|
| 7 |
import re
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def classification(
|
| 11 |
-
doc: str,
|
| 12 |
-
da_hypothesis_template: str,
|
| 13 |
-
da_candidate_labels: str,
|
| 14 |
-
sv_hypothesis_template: str,
|
| 15 |
-
sv_candidate_labels: str,
|
| 16 |
-
no_hypothesis_template: str,
|
| 17 |
-
no_candidate_labels: str,
|
| 18 |
-
) -> Dict[str, float]:
|
| 19 |
-
"""Classify text into categories.
|
| 20 |
-
|
| 21 |
-
Args:
|
| 22 |
-
doc (str):
|
| 23 |
-
Text to classify.
|
| 24 |
-
da_hypothesis_template (str):
|
| 25 |
-
Template for the hypothesis to be used for Danish classification.
|
| 26 |
-
da_candidate_labels (str):
|
| 27 |
-
Comma-separated list of candidate labels for Danish classification.
|
| 28 |
-
sv_hypothesis_template (str):
|
| 29 |
-
Template for the hypothesis to be used for Swedish classification.
|
| 30 |
-
sv_candidate_labels (str):
|
| 31 |
-
Comma-separated list of candidate labels for Swedish classification.
|
| 32 |
-
no_hypothesis_template (str):
|
| 33 |
-
Template for the hypothesis to be used for Norwegian classification.
|
| 34 |
-
no_candidate_labels (str):
|
| 35 |
-
Comma-separated list of candidate labels for Norwegian classification.
|
| 36 |
-
|
| 37 |
-
Returns:
|
| 38 |
-
dict of str to float:
|
| 39 |
-
The predicted label and the confidence score.
|
| 40 |
-
"""
|
| 41 |
-
# Detect the language of the text
|
| 42 |
-
language = detect_language(doc.replace('\n', ' ')).name
|
| 43 |
-
|
| 44 |
-
# Set the hypothesis template and candidate labels based on the detected language
|
| 45 |
-
if language == "sv":
|
| 46 |
-
hypothesis_template = sv_hypothesis_template
|
| 47 |
-
candidate_labels = re.split(r', *', sv_candidate_labels)
|
| 48 |
-
elif language == "no":
|
| 49 |
-
hypothesis_template = no_hypothesis_template
|
| 50 |
-
candidate_labels = re.split(r', *', no_candidate_labels)
|
| 51 |
-
else:
|
| 52 |
-
hypothesis_template = da_hypothesis_template
|
| 53 |
-
candidate_labels = re.split(r', *', da_candidate_labels)
|
| 54 |
-
|
| 55 |
-
# Run the classifier on the text
|
| 56 |
-
result = classifier(
|
| 57 |
-
doc,
|
| 58 |
-
candidate_labels=candidate_labels,
|
| 59 |
-
hypothesis_template=hypothesis_template,
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
print(result)
|
| 63 |
-
|
| 64 |
-
# Return the predicted label
|
| 65 |
-
return {lbl: score for lbl, score in zip(result["labels"], result["scores"])}
|
| 66 |
|
| 67 |
|
| 68 |
def main():
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# Load the zero-shot classification pipeline
|
| 71 |
-
global classifier
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
# Create dictionary of descriptions for each task, containing the hypothesis template
|
|
@@ -124,8 +79,8 @@ def main():
|
|
| 124 |
with gr.Blocks() as demo:
|
| 125 |
|
| 126 |
# Create title and description
|
| 127 |
-
|
| 128 |
-
|
| 129 |
Classify text in Danish, Swedish or Norwegian into categories, without
|
| 130 |
finetuning on any training data!
|
| 131 |
|
|
@@ -140,13 +95,13 @@ def main():
|
|
| 140 |
_Also, be patient, as this demo is running on a CPU!_
|
| 141 |
""")
|
| 142 |
|
| 143 |
-
with
|
| 144 |
|
| 145 |
# Input column
|
| 146 |
-
with
|
| 147 |
|
| 148 |
# Create a dropdown menu for the task
|
| 149 |
-
dropdown =
|
| 150 |
label="Task",
|
| 151 |
choices=[
|
| 152 |
"Sentiment classification",
|
|
@@ -155,37 +110,37 @@ def main():
|
|
| 155 |
"Product feedback detection",
|
| 156 |
"Define your own task!",
|
| 157 |
],
|
| 158 |
-
|
| 159 |
)
|
| 160 |
|
| 161 |
-
with
|
| 162 |
-
da_hypothesis_template =
|
| 163 |
label="Danish hypothesis template",
|
| 164 |
-
|
| 165 |
)
|
| 166 |
-
da_candidate_labels =
|
| 167 |
label="Danish candidate labels (comma separated)",
|
| 168 |
-
|
| 169 |
)
|
| 170 |
|
| 171 |
-
with
|
| 172 |
-
sv_hypothesis_template =
|
| 173 |
label="Swedish hypothesis template",
|
| 174 |
-
|
| 175 |
)
|
| 176 |
-
sv_candidate_labels =
|
| 177 |
label="Swedish candidate labels (comma separated)",
|
| 178 |
-
|
| 179 |
)
|
| 180 |
|
| 181 |
-
with
|
| 182 |
-
no_hypothesis_template =
|
| 183 |
label="Norwegian hypothesis template",
|
| 184 |
-
|
| 185 |
)
|
| 186 |
-
no_candidate_labels =
|
| 187 |
label="Norwegian candidate labels (comma separated)",
|
| 188 |
-
|
| 189 |
)
|
| 190 |
|
| 191 |
# When a new task is chosen, update the description
|
|
@@ -203,16 +158,16 @@ def main():
|
|
| 203 |
)
|
| 204 |
|
| 205 |
# Output column
|
| 206 |
-
with
|
| 207 |
|
| 208 |
# Create a text box for the input text
|
| 209 |
-
input_textbox =
|
| 210 |
-
label="Input text",
|
| 211 |
)
|
| 212 |
|
| 213 |
-
with
|
| 214 |
-
clear_btn =
|
| 215 |
-
submit_btn =
|
| 216 |
|
| 217 |
# When the clear button is clicked, clear the input text box
|
| 218 |
clear_btn.click(
|
|
@@ -220,10 +175,10 @@ def main():
|
|
| 220 |
)
|
| 221 |
|
| 222 |
|
| 223 |
-
with
|
| 224 |
|
| 225 |
# Create output text box
|
| 226 |
-
output_textbox =
|
| 227 |
|
| 228 |
# When the submit button is clicked, run the classifier on the input text
|
| 229 |
# and display the result in the output text box
|
|
@@ -242,7 +197,66 @@ def main():
|
|
| 242 |
)
|
| 243 |
|
| 244 |
# Run the app
|
| 245 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
|
| 248 |
if __name__ == "__main__":
|
|
|
|
| 2 |
|
| 3 |
from typing import Dict, Tuple
|
| 4 |
import gradio as gr
|
| 5 |
+
from gradio.components import Dropdown, Textbox, Row, Column, Button, Label, Markdown
|
| 6 |
+
from types import MethodType
|
| 7 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 8 |
from luga import language as detect_language
|
| 9 |
+
import torch
|
| 10 |
import re
|
| 11 |
+
import os
|
| 12 |
+
import torch._dynamo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def main():
|
| 16 |
+
# Disable tokenizers parallelism
|
| 17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 18 |
|
| 19 |
# Load the zero-shot classification pipeline
|
| 20 |
+
global classifier, model, tokenizer
|
| 21 |
+
model_id = "alexandrainst/scandi-nli-large"
|
| 22 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 24 |
+
model = torch.compile(model=model, backend="aot_eager")
|
| 25 |
+
model.eval()
|
| 26 |
+
classifier = pipeline("zero-shot-classification", model=model, tokenizer=tokenizer)
|
| 27 |
+
classifier.get_inference_context = MethodType(
|
| 28 |
+
lambda self: torch.no_grad, classifier
|
| 29 |
)
|
| 30 |
|
| 31 |
# Create dictionary of descriptions for each task, containing the hypothesis template
|
|
|
|
| 79 |
with gr.Blocks() as demo:
|
| 80 |
|
| 81 |
# Create title and description
|
| 82 |
+
Markdown("# Scandinavian Zero-shot Text Classification")
|
| 83 |
+
Markdown("""
|
| 84 |
Classify text in Danish, Swedish or Norwegian into categories, without
|
| 85 |
finetuning on any training data!
|
| 86 |
|
|
|
|
| 95 |
_Also, be patient, as this demo is running on a CPU!_
|
| 96 |
""")
|
| 97 |
|
| 98 |
+
with Row():
|
| 99 |
|
| 100 |
# Input column
|
| 101 |
+
with Column():
|
| 102 |
|
| 103 |
# Create a dropdown menu for the task
|
| 104 |
+
dropdown = Dropdown(
|
| 105 |
label="Task",
|
| 106 |
choices=[
|
| 107 |
"Sentiment classification",
|
|
|
|
| 110 |
"Product feedback detection",
|
| 111 |
"Define your own task!",
|
| 112 |
],
|
| 113 |
+
value="Sentiment classification",
|
| 114 |
)
|
| 115 |
|
| 116 |
+
with Row(variant="compact"):
|
| 117 |
+
da_hypothesis_template = Textbox(
|
| 118 |
label="Danish hypothesis template",
|
| 119 |
+
value="Dette eksempel er {}.",
|
| 120 |
)
|
| 121 |
+
da_candidate_labels = Textbox(
|
| 122 |
label="Danish candidate labels (comma separated)",
|
| 123 |
+
value="positivt, negativt, neutralt",
|
| 124 |
)
|
| 125 |
|
| 126 |
+
with Row(variant="compact"):
|
| 127 |
+
sv_hypothesis_template = Textbox(
|
| 128 |
label="Swedish hypothesis template",
|
| 129 |
+
value="Detta exempel är {}.",
|
| 130 |
)
|
| 131 |
+
sv_candidate_labels = Textbox(
|
| 132 |
label="Swedish candidate labels (comma separated)",
|
| 133 |
+
value="positivt, negativt, neutralt",
|
| 134 |
)
|
| 135 |
|
| 136 |
+
with Row(variant="compact"):
|
| 137 |
+
no_hypothesis_template = Textbox(
|
| 138 |
label="Norwegian hypothesis template",
|
| 139 |
+
value="Dette eksemplet er {}.",
|
| 140 |
)
|
| 141 |
+
no_candidate_labels = Textbox(
|
| 142 |
label="Norwegian candidate labels (comma separated)",
|
| 143 |
+
value="positivt, negativt, nøytralt",
|
| 144 |
)
|
| 145 |
|
| 146 |
# When a new task is chosen, update the description
|
|
|
|
| 158 |
)
|
| 159 |
|
| 160 |
# Output column
|
| 161 |
+
with Column():
|
| 162 |
|
| 163 |
# Create a text box for the input text
|
| 164 |
+
input_textbox = Textbox(
|
| 165 |
+
label="Input text", value="Jeg er helt vild med fodbolden 😊"
|
| 166 |
)
|
| 167 |
|
| 168 |
+
with Row():
|
| 169 |
+
clear_btn = Button(value="Clear")
|
| 170 |
+
submit_btn = Button(value="Submit", variant="primary")
|
| 171 |
|
| 172 |
# When the clear button is clicked, clear the input text box
|
| 173 |
clear_btn.click(
|
|
|
|
| 175 |
)
|
| 176 |
|
| 177 |
|
| 178 |
+
with Column():
|
| 179 |
|
| 180 |
# Create output text box
|
| 181 |
+
output_textbox = Label(label="Result")
|
| 182 |
|
| 183 |
# When the submit button is clicked, run the classifier on the input text
|
| 184 |
# and display the result in the output text box
|
|
|
|
| 197 |
)
|
| 198 |
|
| 199 |
# Run the app
|
| 200 |
+
demo.launch(width=.5)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
@torch.compile()
|
| 204 |
+
def classification(
|
| 205 |
+
doc: str,
|
| 206 |
+
da_hypothesis_template: str,
|
| 207 |
+
da_candidate_labels: str,
|
| 208 |
+
sv_hypothesis_template: str,
|
| 209 |
+
sv_candidate_labels: str,
|
| 210 |
+
no_hypothesis_template: str,
|
| 211 |
+
no_candidate_labels: str,
|
| 212 |
+
) -> Dict[str, float]:
|
| 213 |
+
"""Classify text into categories.
|
| 214 |
+
|
| 215 |
+
Args:
|
| 216 |
+
doc (str):
|
| 217 |
+
Text to classify.
|
| 218 |
+
da_hypothesis_template (str):
|
| 219 |
+
Template for the hypothesis to be used for Danish classification.
|
| 220 |
+
da_candidate_labels (str):
|
| 221 |
+
Comma-separated list of candidate labels for Danish classification.
|
| 222 |
+
sv_hypothesis_template (str):
|
| 223 |
+
Template for the hypothesis to be used for Swedish classification.
|
| 224 |
+
sv_candidate_labels (str):
|
| 225 |
+
Comma-separated list of candidate labels for Swedish classification.
|
| 226 |
+
no_hypothesis_template (str):
|
| 227 |
+
Template for the hypothesis to be used for Norwegian classification.
|
| 228 |
+
no_candidate_labels (str):
|
| 229 |
+
Comma-separated list of candidate labels for Norwegian classification.
|
| 230 |
+
|
| 231 |
+
Returns:
|
| 232 |
+
dict of str to float:
|
| 233 |
+
The predicted label and the confidence score.
|
| 234 |
+
"""
|
| 235 |
+
# Detect the language of the text
|
| 236 |
+
language = detect_language(doc.replace('\n', ' ')).name
|
| 237 |
+
|
| 238 |
+
# Set the hypothesis template and candidate labels based on the detected language
|
| 239 |
+
if language == "sv":
|
| 240 |
+
hypothesis_template = sv_hypothesis_template
|
| 241 |
+
candidate_labels = re.split(r', *', sv_candidate_labels)
|
| 242 |
+
elif language == "no":
|
| 243 |
+
hypothesis_template = no_hypothesis_template
|
| 244 |
+
candidate_labels = re.split(r', *', no_candidate_labels)
|
| 245 |
+
else:
|
| 246 |
+
hypothesis_template = da_hypothesis_template
|
| 247 |
+
candidate_labels = re.split(r', *', da_candidate_labels)
|
| 248 |
+
|
| 249 |
+
# Run the classifier on the text
|
| 250 |
+
result = classifier(
|
| 251 |
+
doc,
|
| 252 |
+
candidate_labels=candidate_labels,
|
| 253 |
+
hypothesis_template=hypothesis_template,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
print(result)
|
| 257 |
+
|
| 258 |
+
# Return the predicted label
|
| 259 |
+
return {lbl: score for lbl, score in zip(result["labels"], result["scores"])}
|
| 260 |
|
| 261 |
|
| 262 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -35,7 +35,9 @@ MarkupSafe==2.1.1
|
|
| 35 |
matplotlib==3.6.2
|
| 36 |
mdit-py-plugins==0.3.1
|
| 37 |
mdurl==0.1.2
|
|
|
|
| 38 |
multidict==6.0.2
|
|
|
|
| 39 |
nptyping==1.4.4
|
| 40 |
numpy==1.23.5
|
| 41 |
orjson==3.8.2
|
|
@@ -62,10 +64,11 @@ six==1.16.0
|
|
| 62 |
sniffio==1.3.0
|
| 63 |
soupsieve==2.3.2.post1
|
| 64 |
starlette==0.22.0
|
|
|
|
| 65 |
tokenizers==0.13.2
|
| 66 |
-
torch==
|
| 67 |
tqdm==4.64.1
|
| 68 |
-
transformers==4.
|
| 69 |
typing_extensions==4.4.0
|
| 70 |
typish==1.9.3
|
| 71 |
uc-micro-py==1.0.1
|
|
|
|
| 35 |
matplotlib==3.6.2
|
| 36 |
mdit-py-plugins==0.3.1
|
| 37 |
mdurl==0.1.2
|
| 38 |
+
mpmath==1.3.0
|
| 39 |
multidict==6.0.2
|
| 40 |
+
networkx==3.1
|
| 41 |
nptyping==1.4.4
|
| 42 |
numpy==1.23.5
|
| 43 |
orjson==3.8.2
|
|
|
|
| 64 |
sniffio==1.3.0
|
| 65 |
soupsieve==2.3.2.post1
|
| 66 |
starlette==0.22.0
|
| 67 |
+
sympy==1.11.1
|
| 68 |
tokenizers==0.13.2
|
| 69 |
+
torch==2.0.0
|
| 70 |
tqdm==4.64.1
|
| 71 |
+
transformers==4.28.1
|
| 72 |
typing_extensions==4.4.0
|
| 73 |
typish==1.9.3
|
| 74 |
uc-micro-py==1.0.1
|