Spaces:
Runtime error
Runtime error
Commit
·
efd38a2
1
Parent(s):
99d1a14
feat: Add topic classification and offensive speech detection
Browse files
app.py
CHANGED
|
@@ -11,47 +11,132 @@ classifier = pipeline(
|
|
| 11 |
)
|
| 12 |
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
"""Classify text into
|
| 16 |
|
| 17 |
Args:
|
|
|
|
|
|
|
| 18 |
doc (str):
|
| 19 |
Text to classify.
|
| 20 |
|
| 21 |
Returns:
|
| 22 |
str:
|
| 23 |
-
The predicted
|
| 24 |
"""
|
| 25 |
# Detect the language of the text
|
| 26 |
-
language = detect_language(doc).name
|
| 27 |
-
|
| 28 |
-
#
|
| 29 |
-
if language == "
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Run the classifier on the text
|
| 40 |
result = classifier(
|
| 41 |
doc, candidate_labels=candidate_labels, hypothesis_template=hypothesis_template
|
| 42 |
)
|
| 43 |
|
|
|
|
|
|
|
| 44 |
# Return the predicted label
|
| 45 |
-
return
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
# Create the
|
| 49 |
interface = gr.Interface(
|
| 50 |
-
fn=
|
| 51 |
-
inputs=gr.inputs.Textbox(
|
| 52 |
outputs=gr.outputs.Label(type="text"),
|
| 53 |
-
title="Scandinavian
|
| 54 |
-
description="Classify text into
|
| 55 |
)
|
| 56 |
|
| 57 |
# Run the app
|
|
|
|
| 11 |
)
|
| 12 |
|
| 13 |
|
| 14 |
+
def classification(task: str, doc: str) -> str:
|
| 15 |
+
"""Classify text into categories.
|
| 16 |
|
| 17 |
Args:
|
| 18 |
+
task (str):
|
| 19 |
+
Task to perform.
|
| 20 |
doc (str):
|
| 21 |
Text to classify.
|
| 22 |
|
| 23 |
Returns:
|
| 24 |
str:
|
| 25 |
+
The predicted label.
|
| 26 |
"""
|
| 27 |
# Detect the language of the text
|
| 28 |
+
language = detect_language(doc.replace('\n', ' ')).name
|
| 29 |
+
|
| 30 |
+
# Define the confidence string based on the language
|
| 31 |
+
if language == "sv" or language == "no":
|
| 32 |
+
confidence_str = "konfidensnivå"
|
| 33 |
+
else:
|
| 34 |
+
confidence_str = "konfidensniveau"
|
| 35 |
+
|
| 36 |
+
# If the task is sentiment, classify the text into positive, negative or neutral
|
| 37 |
+
if task == "Sentiment classification":
|
| 38 |
+
if language == "sv":
|
| 39 |
+
hypothesis_template = "Detta exempel är {}."
|
| 40 |
+
candidate_labels = ["positivt", "negativt", "neutralt"]
|
| 41 |
+
elif language == "no":
|
| 42 |
+
hypothesis_template = "Dette eksemplet er {}."
|
| 43 |
+
candidate_labels = ["positivt", "negativt", "nøytralt"]
|
| 44 |
+
else:
|
| 45 |
+
hypothesis_template = "Dette eksempel er {}."
|
| 46 |
+
candidate_labels = ["positivt", "negativt", "neutralt"]
|
| 47 |
+
|
| 48 |
+
# Else if the task is topic, classify the text into a topic
|
| 49 |
+
elif task == "News topic classification":
|
| 50 |
+
if language == "sv":
|
| 51 |
+
hypothesis_template = "Detta exempel handlar om {}."
|
| 52 |
+
candidate_labels = [
|
| 53 |
+
"krig",
|
| 54 |
+
"regering",
|
| 55 |
+
"politik",
|
| 56 |
+
"utbildning",
|
| 57 |
+
"hälsa",
|
| 58 |
+
"miljö",
|
| 59 |
+
"ekonomi",
|
| 60 |
+
"affärer",
|
| 61 |
+
"mode",
|
| 62 |
+
"underhållning",
|
| 63 |
+
"sport",
|
| 64 |
+
]
|
| 65 |
+
elif language == "no":
|
| 66 |
+
hypothesis_template = "Dette eksemplet handler om {}."
|
| 67 |
+
candidate_labels = [
|
| 68 |
+
"krig",
|
| 69 |
+
"myndighetene",
|
| 70 |
+
"politikk",
|
| 71 |
+
"utdanning",
|
| 72 |
+
"helse",
|
| 73 |
+
"miljø",
|
| 74 |
+
"økonomi",
|
| 75 |
+
"virksomhet",
|
| 76 |
+
"mote",
|
| 77 |
+
"underholdning",
|
| 78 |
+
"sport",
|
| 79 |
+
]
|
| 80 |
+
else:
|
| 81 |
+
hypothesis_template = "Denne nyhedsartikel handler primært om {}."
|
| 82 |
+
candidate_labels = [
|
| 83 |
+
"krig",
|
| 84 |
+
"regering",
|
| 85 |
+
"politik",
|
| 86 |
+
"uddannelse",
|
| 87 |
+
"sundhed",
|
| 88 |
+
"miljø",
|
| 89 |
+
"økonomi",
|
| 90 |
+
"forretning",
|
| 91 |
+
"mode",
|
| 92 |
+
"underholdning",
|
| 93 |
+
"sport",
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
# Else if the task is offensive text detection, classify the text into offensive
|
| 97 |
+
# or not offensive
|
| 98 |
+
elif task == "Offensive text detection":
|
| 99 |
+
if language == "sv":
|
| 100 |
+
hypothesis_template = "Detta exempel er {}."
|
| 101 |
+
candidate_labels = ["stötande", "inte stötande"]
|
| 102 |
+
elif language == "no":
|
| 103 |
+
hypothesis_template = "Dette eksemplet er {}."
|
| 104 |
+
candidate_labels = ["støtende", "ikke støtende"]
|
| 105 |
+
else:
|
| 106 |
+
hypothesis_template = "Dette eksempel er {}."
|
| 107 |
+
candidate_labels = ["anstødig tale", "ikke anstødig tale"]
|
| 108 |
+
|
| 109 |
+
# Else the task is not supported, so raise an error
|
| 110 |
+
else:
|
| 111 |
+
raise ValueError(f"Task {task} not supported.")
|
| 112 |
|
| 113 |
# Run the classifier on the text
|
| 114 |
result = classifier(
|
| 115 |
doc, candidate_labels=candidate_labels, hypothesis_template=hypothesis_template
|
| 116 |
)
|
| 117 |
|
| 118 |
+
print(result)
|
| 119 |
+
|
| 120 |
# Return the predicted label
|
| 121 |
+
return (
|
| 122 |
+
f"{result['labels'][0].capitalize()}\n"
|
| 123 |
+
f"({confidence_str}: {result['scores'][0]:.0%})"
|
| 124 |
+
)
|
| 125 |
|
| 126 |
+
# Create a dropdown menu for the task
|
| 127 |
+
dropdown = gr.inputs.Dropdown(
|
| 128 |
+
label="Task",
|
| 129 |
+
choices=["Sentiment classification", "News topic classification", "Offensive text detection"],
|
| 130 |
+
default="Sentiment classification",
|
| 131 |
+
)
|
| 132 |
|
| 133 |
+
# Create the interface, where the function depends on the task chosen
|
| 134 |
interface = gr.Interface(
|
| 135 |
+
fn=classification,
|
| 136 |
+
inputs=[dropdown, gr.inputs.Textbox(label="Text")],
|
| 137 |
outputs=gr.outputs.Label(type="text"),
|
| 138 |
+
title="Scandinavian zero-shot text classification",
|
| 139 |
+
description="Classify text in Danish, Swedish or Norwegian into categories, without any training data!",
|
| 140 |
)
|
| 141 |
|
| 142 |
# Run the app
|