File size: 15,097 Bytes
c20d00d
 
 
00e7318
c20d00d
 
00e7318
c20d00d
 
 
 
00e7318
c20d00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e7318
c20d00d
00e7318
 
 
 
 
 
 
 
c20d00d
 
 
 
 
00e7318
c20d00d
00e7318
 
 
c20d00d
 
00e7318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20d00d
 
 
00e7318
 
 
c20d00d
00e7318
c20d00d
 
 
 
 
 
 
 
 
 
 
 
 
 
00e7318
c20d00d
00e7318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20d00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e7318
 
 
 
 
 
 
c20d00d
 
 
00e7318
c20d00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e7318
 
 
 
 
 
 
 
 
 
 
 
 
c20d00d
 
 
 
 
 
 
 
 
 
 
 
 
00e7318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20d00d
 
00e7318
c20d00d
00e7318
 
 
c20d00d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import json
import os
import time
from time_util import timer
from typing import Optional
from unicodedata import normalize
import uuid
import numpy as np
import onnxruntime as ort
import soundfile as sf
from huggingface_hub import snapshot_download
from typing import Optional, Union


class UnicodeProcessor:
    def __init__(self, unicode_indexer_path: str):
        with open(unicode_indexer_path, "r") as f:
            self.indexer = json.load(f)

    def _preprocess_text(self, text: str) -> str:
        # TODO: add more preprocessing
        text = normalize("NFKD", text)
        return text

    def _get_text_mask(self, text_ids_lengths: np.ndarray) -> np.ndarray:
        text_mask = length_to_mask(text_ids_lengths)
        return text_mask

    def _text_to_unicode_values(self, text: str) -> np.ndarray:
        unicode_values = np.array(
            [ord(char) for char in text], dtype=np.uint16
        )  # 2 bytes
        return unicode_values

    def __call__(self, text_list: list[str]) -> tuple[np.ndarray, np.ndarray]:
        text_list = [self._preprocess_text(t) for t in text_list]
        text_ids_lengths = np.array([len(text) for text in text_list], dtype=np.int64)
        text_ids = np.zeros((len(text_list), text_ids_lengths.max()), dtype=np.int64)
        for i, text in enumerate(text_list):
            unicode_vals = self._text_to_unicode_values(text)
            text_ids[i, : len(unicode_vals)] = np.array(
                [self.indexer[val] for val in unicode_vals], dtype=np.int64
            )
        text_mask = self._get_text_mask(text_ids_lengths)
        return text_ids, text_mask


class Style:
    def __init__(self, style_ttl_onnx: np.ndarray, style_dp_onnx: np.ndarray):
        self.ttl = style_ttl_onnx
        self.dp = style_dp_onnx


class TextToSpeech:
    def __init__(
        self,
        cfgs: dict,
        text_processor: UnicodeProcessor,
        dp_ort: ort.InferenceSession,
        text_enc_ort: ort.InferenceSession,
        vector_est_ort: ort.InferenceSession,
        vocoder_ort: ort.InferenceSession,
    ):
        self.cfgs = cfgs
        self.text_processor = text_processor
        self.dp_ort = dp_ort
        self.text_enc_ort = text_enc_ort
        self.vector_est_ort = vector_est_ort
        self.vocoder_ort = vocoder_ort
        self.sample_rate = cfgs["ae"]["sample_rate"]
        self.base_chunk_size = cfgs["ae"]["base_chunk_size"]
        self.chunk_compress_factor = cfgs["ttl"]["chunk_compress_factor"]
        self.ldim = cfgs["ttl"]["latent_dim"]

    def sample_noisy_latent(
        self, duration: np.ndarray
    ) -> tuple[np.ndarray, np.ndarray]:
        bsz = len(duration)
        wav_len_max = duration.max() * self.sample_rate
        wav_lengths = (duration * self.sample_rate).astype(np.int64)
        chunk_size = self.base_chunk_size * self.chunk_compress_factor
        latent_len = ((wav_len_max + chunk_size - 1) / chunk_size).astype(np.int32)
        latent_dim = self.ldim * self.chunk_compress_factor
        noisy_latent = np.random.randn(bsz, latent_dim, latent_len).astype(np.float32)
        latent_mask = get_latent_mask(
            wav_lengths, self.base_chunk_size, self.chunk_compress_factor
        )
        noisy_latent = noisy_latent * latent_mask
        return noisy_latent, latent_mask


    def _infer(
        self,
        text_list: list[str],
        style: Style,
        total_step: int,
        speed: float = 1.05,
        suggested_duration: Optional[Union[float, list[float], np.ndarray]] = None,
        speed_min_factor: float = 0.75,
        speed_max_factor: float = 1.2,
    ) -> tuple[np.ndarray, np.ndarray]:
        assert (
            len(text_list) == style.ttl.shape[0]
        ), "Number of texts must match number of style vectors"
        bsz = len(text_list)

        text_ids, text_mask = self.text_processor(text_list)

        # 1) Predict base duration
        dur_pred, *_ = self.dp_ort.run(
            None, {"text_ids": text_ids, "style_dp": style.dp, "text_mask": text_mask}
        )
        dur_pred = np.array(dur_pred, dtype=np.float32).reshape(bsz)  # (bsz,)

        # 2) Adjust duration based on suggested_duration (if given)
        if suggested_duration is not None:
            sugg = np.array(suggested_duration, dtype=np.float32)
            if sugg.ndim == 0:
                # same suggestion for all
                sugg = np.full((bsz,), float(sugg), dtype=np.float32)
            else:
                sugg = sugg.reshape(bsz)

            eps = 1e-3
            sugg = np.clip(sugg, eps, None)

            # we want dur_used ≈ sugg
            # dur_used = dur_pred / speed_used  => speed_target = dur_pred / sugg
            speed_target = dur_pred / sugg

            speed_min = speed * speed_min_factor
            speed_max = speed * speed_max_factor
            speed_used = np.clip(speed_target, speed_min, speed_max)

            dur_used = dur_pred / speed_used
        else:
            # default behaviour
            speed_used = np.full((bsz,), speed, dtype=np.float32)
            dur_used = dur_pred / speed_used

        # 3) Continue as before, using dur_used
        text_emb_onnx, *_ = self.text_enc_ort.run(
            None,
            {"text_ids": text_ids, "style_ttl": style.ttl, "text_mask": text_mask},
        )

        xt, latent_mask = self.sample_noisy_latent(dur_used)
        total_step_np = np.array([total_step] * bsz, dtype=np.float32)

        for step in range(total_step):
            current_step = np.array([step] * bsz, dtype=np.float32)
            xt, *_ = self.vector_est_ort.run(
                None,
                {
                    "noisy_latent": xt,
                    "text_emb": text_emb_onnx,
                    "style_ttl": style.ttl,
                    "text_mask": text_mask,
                    "latent_mask": latent_mask,
                    "current_step": current_step,
                    "total_step": total_step_np,
                },
            )

        wav, *_ = self.vocoder_ort.run(None, {"latent": xt})
        return wav, dur_used

    def batch(
        self,
        text_list: list[str],
        style: Style,
        total_step: int,
        speed: float = 1.05,
        suggested_duration: Optional[Union[float, list[float], np.ndarray]] = None,
        speed_min_factor: float = 0.75,
        speed_max_factor: float = 1.2,
    ) -> tuple[np.ndarray, np.ndarray]:
        return self._infer(
            text_list,
            style,
            total_step,
            speed=speed,
            suggested_duration=suggested_duration,
            speed_min_factor=speed_min_factor,
            speed_max_factor=speed_max_factor,
        )


    def __call__(
        self,
        text: str,
        style: Style,
        total_step: int,
        speed: float = 1.05,
        silence_duration: float = 0.3,
    ) -> tuple[np.ndarray, np.ndarray]:
        assert (
            style.ttl.shape[0] == 1
        ), "Single speaker text to speech only supports single style"
        text_list = chunk_text(text)
        wav_cat = None
        dur_cat = None
        for text in text_list:
            wav, dur_onnx = self._infer([text], style, total_step, speed)
            if wav_cat is None:
                wav_cat = wav
                dur_cat = dur_onnx
            else:
                silence = np.zeros(
                    (1, int(silence_duration * self.sample_rate)), dtype=np.float32
                )
                wav_cat = np.concatenate([wav_cat, silence, wav], axis=1)
                dur_cat += dur_onnx + silence_duration
        return wav_cat, dur_cat



def length_to_mask(lengths: np.ndarray, max_len: Optional[int] = None) -> np.ndarray:
    """
    Convert lengths to binary mask.

    Args:
        lengths: (B,)
        max_len: int

    Returns:
        mask: (B, 1, max_len)
    """
    max_len = max_len or lengths.max()
    ids = np.arange(0, max_len)
    mask = (ids < np.expand_dims(lengths, axis=1)).astype(np.float32)
    return mask.reshape(-1, 1, max_len)


def get_latent_mask(
    wav_lengths: np.ndarray, base_chunk_size: int, chunk_compress_factor: int
) -> np.ndarray:
    latent_size = base_chunk_size * chunk_compress_factor
    latent_lengths = (wav_lengths + latent_size - 1) // latent_size
    latent_mask = length_to_mask(latent_lengths)
    return latent_mask


def load_onnx(
    onnx_path: str, opts: ort.SessionOptions, providers: list[str]
) -> ort.InferenceSession:
    return ort.InferenceSession(onnx_path, sess_options=opts, providers=providers)


def load_onnx_all(
    onnx_dir: str, opts: ort.SessionOptions, providers: list[str]
) -> tuple[
    ort.InferenceSession,
    ort.InferenceSession,
    ort.InferenceSession,
    ort.InferenceSession,
]:
    dp_onnx_path = os.path.join(onnx_dir, "duration_predictor.onnx")
    text_enc_onnx_path = os.path.join(onnx_dir, "text_encoder.onnx")
    vector_est_onnx_path = os.path.join(onnx_dir, "vector_estimator.onnx")
    vocoder_onnx_path = os.path.join(onnx_dir, "vocoder.onnx")

    dp_ort = load_onnx(dp_onnx_path, opts, providers)
    text_enc_ort = load_onnx(text_enc_onnx_path, opts, providers)
    vector_est_ort = load_onnx(vector_est_onnx_path, opts, providers)
    vocoder_ort = load_onnx(vocoder_onnx_path, opts, providers)
    return dp_ort, text_enc_ort, vector_est_ort, vocoder_ort


def load_cfgs(onnx_dir: str) -> dict:
    cfg_path = os.path.join(onnx_dir, "tts.json")
    with open(cfg_path, "r") as f:
        cfgs = json.load(f)
    return cfgs


def load_text_processor(onnx_dir: str) -> UnicodeProcessor:
    unicode_indexer_path = os.path.join(onnx_dir, "unicode_indexer.json")
    text_processor = UnicodeProcessor(unicode_indexer_path)
    return text_processor

# text_to_speech = load_text_to_speech(False)


model_dir = snapshot_download("Supertone/supertonic")
onnx_dir = f"{model_dir}/onnx"

def load_text_to_speech(use_gpu: bool = False) -> TextToSpeech:

    opts = ort.SessionOptions()
    if use_gpu:
        providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
    else:
        providers = ["CPUExecutionProvider"]
        print("Using CPU for inference")
    cfgs = load_cfgs(onnx_dir)
    dp_ort, text_enc_ort, vector_est_ort, vocoder_ort = load_onnx_all(
        onnx_dir, opts, providers
    )
    text_processor = load_text_processor(onnx_dir)
    return TextToSpeech(
        cfgs, text_processor, dp_ort, text_enc_ort, vector_est_ort, vocoder_ort
    )


def load_voice_style(voice_style_paths: list[str], verbose: bool = False) -> Style:
    bsz = len(voice_style_paths)

    # Read first file to get dimensions
    with open(voice_style_paths[0], "r") as f:
        first_style = json.load(f)
    ttl_dims = first_style["style_ttl"]["dims"]
    dp_dims = first_style["style_dp"]["dims"]

    # Pre-allocate arrays with full batch size
    ttl_style = np.zeros([bsz, ttl_dims[1], ttl_dims[2]], dtype=np.float32)
    dp_style = np.zeros([bsz, dp_dims[1], dp_dims[2]], dtype=np.float32)

    # Fill in the data
    for i, voice_style_path in enumerate(voice_style_paths):
        with open(voice_style_path, "r") as f:
            voice_style = json.load(f)

        ttl_data = np.array(
            voice_style["style_ttl"]["data"], dtype=np.float32
        ).flatten()
        ttl_style[i] = ttl_data.reshape(ttl_dims[1], ttl_dims[2])

        dp_data = np.array(voice_style["style_dp"]["data"], dtype=np.float32).flatten()
        dp_style[i] = dp_data.reshape(dp_dims[1], dp_dims[2])

    if verbose:
        print(f"Loaded {bsz} voice styles")
    return Style(ttl_style, dp_style)




def sanitize_filename(text: str, max_len: int) -> str:
    """Sanitize filename by replacing non-alphanumeric characters with underscores"""
    import re

    prefix = text[:max_len]
    return re.sub(r"[^a-zA-Z0-9]", "_", prefix)


def chunk_text(text: str, max_len: int = 300) -> list[str]:
    """
    Split text into chunks by paragraphs and sentences.

    Args:
        text: Input text to chunk
        max_len: Maximum length of each chunk (default: 300)

    Returns:
        List of text chunks
    """
    import re

    # Split by paragraph (two or more newlines)
    paragraphs = [p.strip() for p in re.split(r"\n\s*\n+", text.strip()) if p.strip()]

    chunks = []

    for paragraph in paragraphs:
        paragraph = paragraph.strip()
        if not paragraph:
            continue

        # Split by sentence boundaries (period, question mark, exclamation mark followed by space)
        # But exclude common abbreviations like Mr., Mrs., Dr., etc. and single capital letters like F.
        pattern = r"(?<!Mr\.)(?<!Mrs\.)(?<!Ms\.)(?<!Dr\.)(?<!Prof\.)(?<!Sr\.)(?<!Jr\.)(?<!Ph\.D\.)(?<!etc\.)(?<!e\.g\.)(?<!i\.e\.)(?<!vs\.)(?<!Inc\.)(?<!Ltd\.)(?<!Co\.)(?<!Corp\.)(?<!St\.)(?<!Ave\.)(?<!Blvd\.)(?<!\b[A-Z]\.)(?<=[.!?])\s+"
        sentences = re.split(pattern, paragraph)

        current_chunk = ""

        for sentence in sentences:
            if len(current_chunk) + len(sentence) + 1 <= max_len:
                current_chunk += (" " if current_chunk else "") + sentence
            else:
                if current_chunk:
                    chunks.append(current_chunk.strip())
                current_chunk = sentence

        if current_chunk:
            chunks.append(current_chunk.strip())

    return chunks

def generate_speech(
    text_to_speech,
    text_list,
    save_dir,
    voice_style="M1",
    total_step=5,
    speed=1.05,
    n_test=1,
    batch=None,
    suggested_durations=None,      # NEW: list/np.ndarray of seconds, len == len(text_list)
    speed_min_factor=0.75,
    speed_max_factor=1.2,
):

    saved_files_list = []

    voice_style_paths = [f"{model_dir}/voice_styles/{voice_style}.json"] * len(text_list)

    assert len(voice_style_paths) == len(
        text_list
    ), f"Number of voice styles ({len(voice_style_paths)}) must match number of texts ({len(text_list)})"
    bsz = len(voice_style_paths)

    style = load_voice_style(voice_style_paths, verbose=True)

    for n in range(n_test):
        if batch:
            wav, duration = text_to_speech.batch(
                text_list,
                style,
                total_step,
                speed=speed,
                suggested_duration=suggested_durations,
                speed_min_factor=speed_min_factor,
                speed_max_factor=speed_max_factor,
            )
        else:
            # optional: could support suggested_durations[0] here too
            wav, duration = text_to_speech(
                text_list[0], style, total_step, speed
            )

        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for b in range(bsz):
            unique = uuid.uuid4().hex[:8]
            fname = f"{sanitize_filename(text_list[b], 20)}_{unique}_{n+1}.wav"
            w = wav[b, : int(text_to_speech.sample_rate * duration[b].item())]
            sf.write(os.path.join(save_dir, fname), w, text_to_speech.sample_rate)
            saved_files_list.append(f"{save_dir}/{fname}")

    return saved_files_list