Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,097 Bytes
c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d 00e7318 c20d00d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import json
import os
import time
from time_util import timer
from typing import Optional
from unicodedata import normalize
import uuid
import numpy as np
import onnxruntime as ort
import soundfile as sf
from huggingface_hub import snapshot_download
from typing import Optional, Union
class UnicodeProcessor:
def __init__(self, unicode_indexer_path: str):
with open(unicode_indexer_path, "r") as f:
self.indexer = json.load(f)
def _preprocess_text(self, text: str) -> str:
# TODO: add more preprocessing
text = normalize("NFKD", text)
return text
def _get_text_mask(self, text_ids_lengths: np.ndarray) -> np.ndarray:
text_mask = length_to_mask(text_ids_lengths)
return text_mask
def _text_to_unicode_values(self, text: str) -> np.ndarray:
unicode_values = np.array(
[ord(char) for char in text], dtype=np.uint16
) # 2 bytes
return unicode_values
def __call__(self, text_list: list[str]) -> tuple[np.ndarray, np.ndarray]:
text_list = [self._preprocess_text(t) for t in text_list]
text_ids_lengths = np.array([len(text) for text in text_list], dtype=np.int64)
text_ids = np.zeros((len(text_list), text_ids_lengths.max()), dtype=np.int64)
for i, text in enumerate(text_list):
unicode_vals = self._text_to_unicode_values(text)
text_ids[i, : len(unicode_vals)] = np.array(
[self.indexer[val] for val in unicode_vals], dtype=np.int64
)
text_mask = self._get_text_mask(text_ids_lengths)
return text_ids, text_mask
class Style:
def __init__(self, style_ttl_onnx: np.ndarray, style_dp_onnx: np.ndarray):
self.ttl = style_ttl_onnx
self.dp = style_dp_onnx
class TextToSpeech:
def __init__(
self,
cfgs: dict,
text_processor: UnicodeProcessor,
dp_ort: ort.InferenceSession,
text_enc_ort: ort.InferenceSession,
vector_est_ort: ort.InferenceSession,
vocoder_ort: ort.InferenceSession,
):
self.cfgs = cfgs
self.text_processor = text_processor
self.dp_ort = dp_ort
self.text_enc_ort = text_enc_ort
self.vector_est_ort = vector_est_ort
self.vocoder_ort = vocoder_ort
self.sample_rate = cfgs["ae"]["sample_rate"]
self.base_chunk_size = cfgs["ae"]["base_chunk_size"]
self.chunk_compress_factor = cfgs["ttl"]["chunk_compress_factor"]
self.ldim = cfgs["ttl"]["latent_dim"]
def sample_noisy_latent(
self, duration: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
bsz = len(duration)
wav_len_max = duration.max() * self.sample_rate
wav_lengths = (duration * self.sample_rate).astype(np.int64)
chunk_size = self.base_chunk_size * self.chunk_compress_factor
latent_len = ((wav_len_max + chunk_size - 1) / chunk_size).astype(np.int32)
latent_dim = self.ldim * self.chunk_compress_factor
noisy_latent = np.random.randn(bsz, latent_dim, latent_len).astype(np.float32)
latent_mask = get_latent_mask(
wav_lengths, self.base_chunk_size, self.chunk_compress_factor
)
noisy_latent = noisy_latent * latent_mask
return noisy_latent, latent_mask
def _infer(
self,
text_list: list[str],
style: Style,
total_step: int,
speed: float = 1.05,
suggested_duration: Optional[Union[float, list[float], np.ndarray]] = None,
speed_min_factor: float = 0.75,
speed_max_factor: float = 1.2,
) -> tuple[np.ndarray, np.ndarray]:
assert (
len(text_list) == style.ttl.shape[0]
), "Number of texts must match number of style vectors"
bsz = len(text_list)
text_ids, text_mask = self.text_processor(text_list)
# 1) Predict base duration
dur_pred, *_ = self.dp_ort.run(
None, {"text_ids": text_ids, "style_dp": style.dp, "text_mask": text_mask}
)
dur_pred = np.array(dur_pred, dtype=np.float32).reshape(bsz) # (bsz,)
# 2) Adjust duration based on suggested_duration (if given)
if suggested_duration is not None:
sugg = np.array(suggested_duration, dtype=np.float32)
if sugg.ndim == 0:
# same suggestion for all
sugg = np.full((bsz,), float(sugg), dtype=np.float32)
else:
sugg = sugg.reshape(bsz)
eps = 1e-3
sugg = np.clip(sugg, eps, None)
# we want dur_used ≈ sugg
# dur_used = dur_pred / speed_used => speed_target = dur_pred / sugg
speed_target = dur_pred / sugg
speed_min = speed * speed_min_factor
speed_max = speed * speed_max_factor
speed_used = np.clip(speed_target, speed_min, speed_max)
dur_used = dur_pred / speed_used
else:
# default behaviour
speed_used = np.full((bsz,), speed, dtype=np.float32)
dur_used = dur_pred / speed_used
# 3) Continue as before, using dur_used
text_emb_onnx, *_ = self.text_enc_ort.run(
None,
{"text_ids": text_ids, "style_ttl": style.ttl, "text_mask": text_mask},
)
xt, latent_mask = self.sample_noisy_latent(dur_used)
total_step_np = np.array([total_step] * bsz, dtype=np.float32)
for step in range(total_step):
current_step = np.array([step] * bsz, dtype=np.float32)
xt, *_ = self.vector_est_ort.run(
None,
{
"noisy_latent": xt,
"text_emb": text_emb_onnx,
"style_ttl": style.ttl,
"text_mask": text_mask,
"latent_mask": latent_mask,
"current_step": current_step,
"total_step": total_step_np,
},
)
wav, *_ = self.vocoder_ort.run(None, {"latent": xt})
return wav, dur_used
def batch(
self,
text_list: list[str],
style: Style,
total_step: int,
speed: float = 1.05,
suggested_duration: Optional[Union[float, list[float], np.ndarray]] = None,
speed_min_factor: float = 0.75,
speed_max_factor: float = 1.2,
) -> tuple[np.ndarray, np.ndarray]:
return self._infer(
text_list,
style,
total_step,
speed=speed,
suggested_duration=suggested_duration,
speed_min_factor=speed_min_factor,
speed_max_factor=speed_max_factor,
)
def __call__(
self,
text: str,
style: Style,
total_step: int,
speed: float = 1.05,
silence_duration: float = 0.3,
) -> tuple[np.ndarray, np.ndarray]:
assert (
style.ttl.shape[0] == 1
), "Single speaker text to speech only supports single style"
text_list = chunk_text(text)
wav_cat = None
dur_cat = None
for text in text_list:
wav, dur_onnx = self._infer([text], style, total_step, speed)
if wav_cat is None:
wav_cat = wav
dur_cat = dur_onnx
else:
silence = np.zeros(
(1, int(silence_duration * self.sample_rate)), dtype=np.float32
)
wav_cat = np.concatenate([wav_cat, silence, wav], axis=1)
dur_cat += dur_onnx + silence_duration
return wav_cat, dur_cat
def length_to_mask(lengths: np.ndarray, max_len: Optional[int] = None) -> np.ndarray:
"""
Convert lengths to binary mask.
Args:
lengths: (B,)
max_len: int
Returns:
mask: (B, 1, max_len)
"""
max_len = max_len or lengths.max()
ids = np.arange(0, max_len)
mask = (ids < np.expand_dims(lengths, axis=1)).astype(np.float32)
return mask.reshape(-1, 1, max_len)
def get_latent_mask(
wav_lengths: np.ndarray, base_chunk_size: int, chunk_compress_factor: int
) -> np.ndarray:
latent_size = base_chunk_size * chunk_compress_factor
latent_lengths = (wav_lengths + latent_size - 1) // latent_size
latent_mask = length_to_mask(latent_lengths)
return latent_mask
def load_onnx(
onnx_path: str, opts: ort.SessionOptions, providers: list[str]
) -> ort.InferenceSession:
return ort.InferenceSession(onnx_path, sess_options=opts, providers=providers)
def load_onnx_all(
onnx_dir: str, opts: ort.SessionOptions, providers: list[str]
) -> tuple[
ort.InferenceSession,
ort.InferenceSession,
ort.InferenceSession,
ort.InferenceSession,
]:
dp_onnx_path = os.path.join(onnx_dir, "duration_predictor.onnx")
text_enc_onnx_path = os.path.join(onnx_dir, "text_encoder.onnx")
vector_est_onnx_path = os.path.join(onnx_dir, "vector_estimator.onnx")
vocoder_onnx_path = os.path.join(onnx_dir, "vocoder.onnx")
dp_ort = load_onnx(dp_onnx_path, opts, providers)
text_enc_ort = load_onnx(text_enc_onnx_path, opts, providers)
vector_est_ort = load_onnx(vector_est_onnx_path, opts, providers)
vocoder_ort = load_onnx(vocoder_onnx_path, opts, providers)
return dp_ort, text_enc_ort, vector_est_ort, vocoder_ort
def load_cfgs(onnx_dir: str) -> dict:
cfg_path = os.path.join(onnx_dir, "tts.json")
with open(cfg_path, "r") as f:
cfgs = json.load(f)
return cfgs
def load_text_processor(onnx_dir: str) -> UnicodeProcessor:
unicode_indexer_path = os.path.join(onnx_dir, "unicode_indexer.json")
text_processor = UnicodeProcessor(unicode_indexer_path)
return text_processor
# text_to_speech = load_text_to_speech(False)
model_dir = snapshot_download("Supertone/supertonic")
onnx_dir = f"{model_dir}/onnx"
def load_text_to_speech(use_gpu: bool = False) -> TextToSpeech:
opts = ort.SessionOptions()
if use_gpu:
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
print("Using CPU for inference")
cfgs = load_cfgs(onnx_dir)
dp_ort, text_enc_ort, vector_est_ort, vocoder_ort = load_onnx_all(
onnx_dir, opts, providers
)
text_processor = load_text_processor(onnx_dir)
return TextToSpeech(
cfgs, text_processor, dp_ort, text_enc_ort, vector_est_ort, vocoder_ort
)
def load_voice_style(voice_style_paths: list[str], verbose: bool = False) -> Style:
bsz = len(voice_style_paths)
# Read first file to get dimensions
with open(voice_style_paths[0], "r") as f:
first_style = json.load(f)
ttl_dims = first_style["style_ttl"]["dims"]
dp_dims = first_style["style_dp"]["dims"]
# Pre-allocate arrays with full batch size
ttl_style = np.zeros([bsz, ttl_dims[1], ttl_dims[2]], dtype=np.float32)
dp_style = np.zeros([bsz, dp_dims[1], dp_dims[2]], dtype=np.float32)
# Fill in the data
for i, voice_style_path in enumerate(voice_style_paths):
with open(voice_style_path, "r") as f:
voice_style = json.load(f)
ttl_data = np.array(
voice_style["style_ttl"]["data"], dtype=np.float32
).flatten()
ttl_style[i] = ttl_data.reshape(ttl_dims[1], ttl_dims[2])
dp_data = np.array(voice_style["style_dp"]["data"], dtype=np.float32).flatten()
dp_style[i] = dp_data.reshape(dp_dims[1], dp_dims[2])
if verbose:
print(f"Loaded {bsz} voice styles")
return Style(ttl_style, dp_style)
def sanitize_filename(text: str, max_len: int) -> str:
"""Sanitize filename by replacing non-alphanumeric characters with underscores"""
import re
prefix = text[:max_len]
return re.sub(r"[^a-zA-Z0-9]", "_", prefix)
def chunk_text(text: str, max_len: int = 300) -> list[str]:
"""
Split text into chunks by paragraphs and sentences.
Args:
text: Input text to chunk
max_len: Maximum length of each chunk (default: 300)
Returns:
List of text chunks
"""
import re
# Split by paragraph (two or more newlines)
paragraphs = [p.strip() for p in re.split(r"\n\s*\n+", text.strip()) if p.strip()]
chunks = []
for paragraph in paragraphs:
paragraph = paragraph.strip()
if not paragraph:
continue
# Split by sentence boundaries (period, question mark, exclamation mark followed by space)
# But exclude common abbreviations like Mr., Mrs., Dr., etc. and single capital letters like F.
pattern = r"(?<!Mr\.)(?<!Mrs\.)(?<!Ms\.)(?<!Dr\.)(?<!Prof\.)(?<!Sr\.)(?<!Jr\.)(?<!Ph\.D\.)(?<!etc\.)(?<!e\.g\.)(?<!i\.e\.)(?<!vs\.)(?<!Inc\.)(?<!Ltd\.)(?<!Co\.)(?<!Corp\.)(?<!St\.)(?<!Ave\.)(?<!Blvd\.)(?<!\b[A-Z]\.)(?<=[.!?])\s+"
sentences = re.split(pattern, paragraph)
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 1 <= max_len:
current_chunk += (" " if current_chunk else "") + sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def generate_speech(
text_to_speech,
text_list,
save_dir,
voice_style="M1",
total_step=5,
speed=1.05,
n_test=1,
batch=None,
suggested_durations=None, # NEW: list/np.ndarray of seconds, len == len(text_list)
speed_min_factor=0.75,
speed_max_factor=1.2,
):
saved_files_list = []
voice_style_paths = [f"{model_dir}/voice_styles/{voice_style}.json"] * len(text_list)
assert len(voice_style_paths) == len(
text_list
), f"Number of voice styles ({len(voice_style_paths)}) must match number of texts ({len(text_list)})"
bsz = len(voice_style_paths)
style = load_voice_style(voice_style_paths, verbose=True)
for n in range(n_test):
if batch:
wav, duration = text_to_speech.batch(
text_list,
style,
total_step,
speed=speed,
suggested_duration=suggested_durations,
speed_min_factor=speed_min_factor,
speed_max_factor=speed_max_factor,
)
else:
# optional: could support suggested_durations[0] here too
wav, duration = text_to_speech(
text_list[0], style, total_step, speed
)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
for b in range(bsz):
unique = uuid.uuid4().hex[:8]
fname = f"{sanitize_filename(text_list[b], 20)}_{unique}_{n+1}.wav"
w = wav[b, : int(text_to_speech.sample_rate * duration[b].item())]
sf.write(os.path.join(save_dir, fname), w, text_to_speech.sample_rate)
saved_files_list.append(f"{save_dir}/{fname}")
return saved_files_list |