File size: 7,512 Bytes
257f706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import binascii
import logging
import os
import os.path as osp
import shutil
import subprocess

import imageio
import torch
import torchvision

__all__ = ['save_video', 'save_image', 'str2bool']


def rand_name(length=8, suffix=''):
    name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
    if suffix:
        if not suffix.startswith('.'):
            suffix = '.' + suffix
        name += suffix
    return name


def merge_video_audio(video_path: str, audio_path: str):
    """

    Merge the video and audio into a new video, with the duration set to the shorter of the two,

    and overwrite the original video file.



    Parameters:

    video_path (str): Path to the original video file

    audio_path (str): Path to the audio file

    """
    # set logging
    logging.basicConfig(level=logging.INFO)

    # check
    if not os.path.exists(video_path):
        raise FileNotFoundError(f"video file {video_path} does not exist")
    if not os.path.exists(audio_path):
        raise FileNotFoundError(f"audio file {audio_path} does not exist")

    base, ext = os.path.splitext(video_path)
    temp_output = f"{base}_temp{ext}"

    try:
        # create ffmpeg command
        command = [
            'ffmpeg',
            '-y',  # overwrite
            '-i',
            video_path,
            '-i',
            audio_path,
            '-c:v',
            'copy',  # copy video stream
            '-c:a',
            'aac',  # use AAC audio encoder
            '-b:a',
            '192k',  # set audio bitrate (optional)
            '-map',
            '0:v:0',  # select the first video stream
            '-map',
            '1:a:0',  # select the first audio stream
            '-shortest',  # choose the shortest duration
            temp_output
        ]

        # execute the command
        logging.info("Start merging video and audio...")
        result = subprocess.run(
            command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

        # check result
        if result.returncode != 0:
            error_msg = f"FFmpeg execute failed: {result.stderr}"
            logging.error(error_msg)
            raise RuntimeError(error_msg)

        shutil.move(temp_output, video_path)
        logging.info(f"Merge completed, saved to {video_path}")

    except Exception as e:
        if os.path.exists(temp_output):
            os.remove(temp_output)
        logging.error(f"merge_video_audio failed with error: {e}")


def save_video(tensor,

               save_file=None,

               fps=30,

               suffix='.mp4',

               nrow=8,

               normalize=True,

               value_range=(-1, 1)):
    # cache file
    cache_file = osp.join('/tmp', rand_name(
        suffix=suffix)) if save_file is None else save_file

    # save to cache
    try:
        # preprocess
        tensor = tensor.clamp(min(value_range), max(value_range))
        tensor = torch.stack([
            torchvision.utils.make_grid(
                u, nrow=nrow, normalize=normalize, value_range=value_range)
            for u in tensor.unbind(2)
        ],
                             dim=1).permute(1, 2, 3, 0)
        tensor = (tensor * 255).type(torch.uint8).cpu()

        # write video
        writer = imageio.get_writer(
            cache_file, fps=fps, codec='libx264', quality=8)
        for frame in tensor.numpy():
            writer.append_data(frame)
        writer.close()
    except Exception as e:
        logging.info(f'save_video failed, error: {e}')


def save_image(tensor, save_file, nrow=8, normalize=True, value_range=(-1, 1)):
    # cache file
    suffix = osp.splitext(save_file)[1]
    if suffix.lower() not in [
            '.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp'
    ]:
        suffix = '.png'

    # save to cache
    try:
        tensor = tensor.clamp(min(value_range), max(value_range))
        torchvision.utils.save_image(
            tensor,
            save_file,
            nrow=nrow,
            normalize=normalize,
            value_range=value_range)
        return save_file
    except Exception as e:
        logging.info(f'save_image failed, error: {e}')


def str2bool(v):
    """

    Convert a string to a boolean.



    Supported true values: 'yes', 'true', 't', 'y', '1'

    Supported false values: 'no', 'false', 'f', 'n', '0'



    Args:

        v (str): String to convert.



    Returns:

        bool: Converted boolean value.



    Raises:

        argparse.ArgumentTypeError: If the value cannot be converted to boolean.

    """
    if isinstance(v, bool):
        return v
    v_lower = v.lower()
    if v_lower in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v_lower in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected (True/False)')


def masks_like(tensor, zero=False, generator=None, p=0.2):
    assert isinstance(tensor, list)
    out1 = [torch.ones(u.shape, dtype=u.dtype, device=u.device) for u in tensor]

    out2 = [torch.ones(u.shape, dtype=u.dtype, device=u.device) for u in tensor]

    if zero:
        if generator is not None:
            for u, v in zip(out1, out2):
                random_num = torch.rand(
                    1, generator=generator, device=generator.device).item()
                if random_num < p:
                    u[:, 0] = torch.normal(
                        mean=-3.5,
                        std=0.5,
                        size=(1,),
                        device=u.device,
                        generator=generator).expand_as(u[:, 0]).exp()
                    v[:, 0] = torch.zeros_like(v[:, 0])
                else:
                    u[:, 0] = u[:, 0]
                    v[:, 0] = v[:, 0]
        else:
            for u, v in zip(out1, out2):
                u[:, 0] = torch.zeros_like(u[:, 0])
                v[:, 0] = torch.zeros_like(v[:, 0])

    return out1, out2


def best_output_size(w, h, dw, dh, expected_area):
    # float output size
    ratio = w / h
    ow = (expected_area * ratio)**0.5
    oh = expected_area / ow

    # process width first
    ow1 = int(ow // dw * dw)
    oh1 = int(expected_area / ow1 // dh * dh)
    assert ow1 % dw == 0 and oh1 % dh == 0 and ow1 * oh1 <= expected_area
    ratio1 = ow1 / oh1

    # process height first
    oh2 = int(oh // dh * dh)
    ow2 = int(expected_area / oh2 // dw * dw)
    assert oh2 % dh == 0 and ow2 % dw == 0 and ow2 * oh2 <= expected_area
    ratio2 = ow2 / oh2

    # compare ratios
    if max(ratio / ratio1, ratio1 / ratio) < max(ratio / ratio2,
                                                 ratio2 / ratio):
        return ow1, oh1
    else:
        return ow2, oh2


def download_cosyvoice_repo(repo_path):
    try:
        import git
    except ImportError:
        raise ImportError('failed to import git, please run pip install GitPython')
    repo = git.Repo.clone_from('https://github.com/FunAudioLLM/CosyVoice.git', repo_path, multi_options=['--recursive'], branch='main')


def download_cosyvoice_model(model_name, model_path):
    from modelscope import snapshot_download
    snapshot_download('iic/{}'.format(model_name), local_dir=model_path)