Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025. Your modifications here. | |
| # This file wraps and extends sam2.utils.misc for custom modifications. | |
| from sam2.utils import misc as sam2_misc | |
| from sam2.utils.misc import * | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| import os | |
| import logging | |
| import torch | |
| from hydra import compose | |
| from hydra.utils import instantiate | |
| from omegaconf import OmegaConf | |
| from sam2.utils.misc import AsyncVideoFrameLoader, _load_img_as_tensor | |
| from sam2.build_sam import _load_checkpoint | |
| def _load_img_v2_as_tensor(img, image_size): | |
| img_pil = Image.fromarray(img.astype(np.uint8)) | |
| img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size))) | |
| if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images | |
| img_np = img_np / 255.0 | |
| else: | |
| raise RuntimeError(f"Unknown image dtype: {img_np.dtype}") | |
| img = torch.from_numpy(img_np).permute(2, 0, 1) | |
| video_width, video_height = img_pil.size # the original video size | |
| return img, video_height, video_width | |
| def load_video_frames( | |
| video_path, | |
| image_size, | |
| offload_video_to_cpu, | |
| img_mean=(0.485, 0.456, 0.406), | |
| img_std=(0.229, 0.224, 0.225), | |
| async_loading_frames=False, | |
| frame_names=None, | |
| ): | |
| """ | |
| Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format). | |
| The frames are resized to image_size x image_size and are loaded to GPU if | |
| `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. | |
| You can load a frame asynchronously by setting `async_loading_frames` to `True`. | |
| """ | |
| if isinstance(video_path, str) and os.path.isdir(video_path): | |
| jpg_folder = video_path | |
| else: | |
| raise NotImplementedError("Only JPEG frames are supported at this moment") | |
| if frame_names is None: | |
| frame_names = [ | |
| p | |
| for p in os.listdir(jpg_folder) | |
| if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"] | |
| ] | |
| frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) | |
| num_frames = len(frame_names) | |
| if num_frames == 0: | |
| raise RuntimeError(f"no images found in {jpg_folder}") | |
| img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names] | |
| img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] | |
| img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] | |
| if async_loading_frames: | |
| lazy_images = AsyncVideoFrameLoader( | |
| img_paths, image_size, offload_video_to_cpu, img_mean, img_std | |
| ) | |
| return lazy_images, lazy_images.video_height, lazy_images.video_width | |
| images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) | |
| for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): | |
| images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) | |
| if not offload_video_to_cpu: | |
| images = images.cuda() | |
| img_mean = img_mean.cuda() | |
| img_std = img_std.cuda() | |
| # normalize by mean and std | |
| images -= img_mean | |
| images /= img_std | |
| return images, video_height, video_width | |
| def load_video_frames_v2( | |
| frames, | |
| image_size, | |
| offload_video_to_cpu, | |
| img_mean=(0.485, 0.456, 0.406), | |
| img_std=(0.229, 0.224, 0.225), | |
| async_loading_frames=False, | |
| frame_names=None, | |
| ): | |
| """ | |
| Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format). | |
| The frames are resized to image_size x image_size and are loaded to GPU if | |
| `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. | |
| You can load a frame asynchronously by setting `async_loading_frames` to `True`. | |
| """ | |
| num_frames = len(frames) | |
| img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] | |
| img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] | |
| images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) | |
| for n, frame in enumerate(tqdm(frames, desc="video frame")): | |
| images[n], video_height, video_width = _load_img_v2_as_tensor(frame, image_size) | |
| if not offload_video_to_cpu: | |
| images = images.cuda() | |
| img_mean = img_mean.cuda() | |
| img_std = img_std.cuda() | |
| # normalize by mean and std | |
| images -= img_mean | |
| images /= img_std | |
| return images, video_height, video_width | |
| def build_sam2_video_predictor( | |
| config_file, | |
| ckpt_path=None, | |
| device="cuda", | |
| mode="eval", | |
| hydra_overrides_extra=[], | |
| apply_postprocessing=True, | |
| ): | |
| hydra_overrides = [ | |
| "++model._target_=video_predictor.SAM2VideoPredictor", | |
| ] | |
| if apply_postprocessing: | |
| hydra_overrides_extra = hydra_overrides_extra.copy() | |
| hydra_overrides_extra += [ | |
| # dynamically fall back to multi-mask if the single mask is not stable | |
| "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", | |
| "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", | |
| "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", | |
| # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking | |
| "++model.binarize_mask_from_pts_for_mem_enc=true", | |
| # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) | |
| "++model.fill_hole_area=8", | |
| ] | |
| hydra_overrides.extend(hydra_overrides_extra) | |
| # Read config and init model | |
| cfg = compose(config_name=config_file, overrides=hydra_overrides) | |
| OmegaConf.resolve(cfg) | |
| model = instantiate(cfg.model, _recursive_=True) | |
| _load_checkpoint(model, ckpt_path) | |
| model = model.to(device) | |
| if mode == "eval": | |
| model.eval() | |
| return model |