Spaces:
Running
on
Zero
Running
on
Zero
allow frames with no mask
Browse files- wan/modules/animate/preprocess/utils.py +244 -225
wan/modules/animate/preprocess/utils.py
CHANGED
|
@@ -1,226 +1,245 @@
|
|
| 1 |
-
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
-
import os
|
| 3 |
-
import cv2
|
| 4 |
-
import math
|
| 5 |
-
import random
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
-
def get_mask_boxes(mask):
|
| 9 |
-
"""
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
return
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def get_aug_mask(body_mask, w_len=10, h_len=20):
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
if
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
img_pad[
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
return [int(expanded_min_x), int(expanded_max_x), int(expanded_min_y), int(expanded_max_y)]
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import os
|
| 3 |
+
import cv2
|
| 4 |
+
import math
|
| 5 |
+
import random
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
def get_mask_boxes(mask):
|
| 9 |
+
"""
|
| 10 |
+
Return [x_min, y_min, x_max, y_max] or None if mask is empty.
|
| 11 |
+
mask: [h, w] (bool, 0/1, or uint8)
|
| 12 |
+
"""
|
| 13 |
+
# Accept any truthy mask
|
| 14 |
+
y_coords, x_coords = np.nonzero(mask)
|
| 15 |
+
if x_coords.size == 0 or y_coords.size == 0:
|
| 16 |
+
return None
|
| 17 |
+
|
| 18 |
+
x_min = int(x_coords.min())
|
| 19 |
+
x_max = int(x_coords.max())
|
| 20 |
+
y_min = int(y_coords.min())
|
| 21 |
+
y_max = int(y_coords.max())
|
| 22 |
+
return np.array([x_min, y_min, x_max, y_max], dtype=np.int32)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_aug_mask(body_mask, w_len=10, h_len=20):
|
| 26 |
+
"""
|
| 27 |
+
Fills small holes/stripes inside the detected bbox area.
|
| 28 |
+
Safely handles empty masks and degenerate boxes.
|
| 29 |
+
"""
|
| 30 |
+
# Ensure binary 0/1 uint8
|
| 31 |
+
if body_mask.dtype != np.uint8:
|
| 32 |
+
body_mask = (body_mask > 0).astype(np.uint8)
|
| 33 |
+
|
| 34 |
+
body_bbox = get_mask_boxes(body_mask)
|
| 35 |
+
if body_bbox is None:
|
| 36 |
+
# Nothing to augment for this frame
|
| 37 |
+
return body_mask
|
| 38 |
+
|
| 39 |
+
x_min, y_min, x_max, y_max = map(int, body_bbox)
|
| 40 |
+
if x_max <= x_min or y_max <= y_min:
|
| 41 |
+
# Degenerate bbox; do nothing
|
| 42 |
+
return body_mask
|
| 43 |
+
|
| 44 |
+
bbox_w = x_max - x_min
|
| 45 |
+
bbox_h = y_max - y_min
|
| 46 |
+
|
| 47 |
+
# Prevent zero step sizes
|
| 48 |
+
w_slice = max(1, int(bbox_w / max(1, w_len)))
|
| 49 |
+
h_slice = max(1, int(bbox_h / max(1, h_len)))
|
| 50 |
+
|
| 51 |
+
for each_w in range(x_min, x_max, w_slice):
|
| 52 |
+
w_start = min(each_w, x_max)
|
| 53 |
+
w_end = min(each_w + w_slice, x_max)
|
| 54 |
+
for each_h in range(y_min, y_max, h_slice):
|
| 55 |
+
h_start = min(each_h, y_max)
|
| 56 |
+
h_end = min(each_h + h_slice, y_max)
|
| 57 |
+
if body_mask[h_start:h_end, w_start:w_end].sum() > 0:
|
| 58 |
+
body_mask[h_start:h_end, w_start:w_end] = 1
|
| 59 |
+
|
| 60 |
+
return body_mask
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def get_mask_body_img(img_copy, hand_mask, k=7, iterations=1):
|
| 64 |
+
kernel = np.ones((k, k), np.uint8)
|
| 65 |
+
dilation = cv2.dilate(hand_mask, kernel, iterations=iterations)
|
| 66 |
+
mask_hand_img = img_copy * (1 - dilation[:, :, None])
|
| 67 |
+
|
| 68 |
+
return mask_hand_img, dilation
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_face_bboxes(kp2ds, scale, image_shape, ratio_aug):
|
| 72 |
+
h, w = image_shape
|
| 73 |
+
kp2ds_face = kp2ds.copy()[23:91, :2]
|
| 74 |
+
|
| 75 |
+
min_x, min_y = np.min(kp2ds_face, axis=0)
|
| 76 |
+
max_x, max_y = np.max(kp2ds_face, axis=0)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
initial_width = max_x - min_x
|
| 80 |
+
initial_height = max_y - min_y
|
| 81 |
+
|
| 82 |
+
initial_area = initial_width * initial_height
|
| 83 |
+
|
| 84 |
+
expanded_area = initial_area * scale
|
| 85 |
+
|
| 86 |
+
new_width = np.sqrt(expanded_area * (initial_width / initial_height))
|
| 87 |
+
new_height = np.sqrt(expanded_area * (initial_height / initial_width))
|
| 88 |
+
|
| 89 |
+
delta_width = (new_width - initial_width) / 2
|
| 90 |
+
delta_height = (new_height - initial_height) / 4
|
| 91 |
+
|
| 92 |
+
if ratio_aug:
|
| 93 |
+
if random.random() > 0.5:
|
| 94 |
+
delta_width += random.uniform(0, initial_width // 10)
|
| 95 |
+
else:
|
| 96 |
+
delta_height += random.uniform(0, initial_height // 10)
|
| 97 |
+
|
| 98 |
+
expanded_min_x = max(min_x - delta_width, 0)
|
| 99 |
+
expanded_max_x = min(max_x + delta_width, w)
|
| 100 |
+
expanded_min_y = max(min_y - 3 * delta_height, 0)
|
| 101 |
+
expanded_max_y = min(max_y + delta_height, h)
|
| 102 |
+
|
| 103 |
+
return [int(expanded_min_x), int(expanded_max_x), int(expanded_min_y), int(expanded_max_y)]
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def calculate_new_size(orig_w, orig_h, target_area, divisor=64):
|
| 107 |
+
|
| 108 |
+
target_ratio = orig_w / orig_h
|
| 109 |
+
|
| 110 |
+
def check_valid(w, h):
|
| 111 |
+
|
| 112 |
+
if w <= 0 or h <= 0:
|
| 113 |
+
return False
|
| 114 |
+
return (w * h <= target_area and
|
| 115 |
+
w % divisor == 0 and
|
| 116 |
+
h % divisor == 0)
|
| 117 |
+
|
| 118 |
+
def get_ratio_diff(w, h):
|
| 119 |
+
|
| 120 |
+
return abs(w / h - target_ratio)
|
| 121 |
+
|
| 122 |
+
def round_to_64(value, round_up=False, divisor=64):
|
| 123 |
+
|
| 124 |
+
if round_up:
|
| 125 |
+
return divisor * ((value + (divisor - 1)) // divisor)
|
| 126 |
+
return divisor * (value // divisor)
|
| 127 |
+
|
| 128 |
+
possible_sizes = []
|
| 129 |
+
|
| 130 |
+
max_area_h = int(np.sqrt(target_area / target_ratio))
|
| 131 |
+
max_area_w = int(max_area_h * target_ratio)
|
| 132 |
+
|
| 133 |
+
max_h = round_to_64(max_area_h, round_up=True, divisor=divisor)
|
| 134 |
+
max_w = round_to_64(max_area_w, round_up=True, divisor=divisor)
|
| 135 |
+
|
| 136 |
+
for h in range(divisor, max_h + divisor, divisor):
|
| 137 |
+
ideal_w = h * target_ratio
|
| 138 |
+
|
| 139 |
+
w_down = round_to_64(ideal_w)
|
| 140 |
+
w_up = round_to_64(ideal_w, round_up=True)
|
| 141 |
+
|
| 142 |
+
for w in [w_down, w_up]:
|
| 143 |
+
if check_valid(w, h, divisor):
|
| 144 |
+
possible_sizes.append((w, h, get_ratio_diff(w, h)))
|
| 145 |
+
|
| 146 |
+
if not possible_sizes:
|
| 147 |
+
raise ValueError("Can not find suitable size")
|
| 148 |
+
|
| 149 |
+
possible_sizes.sort(key=lambda x: (-x[0] * x[1], x[2]))
|
| 150 |
+
|
| 151 |
+
best_w, best_h, _ = possible_sizes[0]
|
| 152 |
+
return int(best_w), int(best_h)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def resize_by_area(image, target_area, keep_aspect_ratio=True, divisor=64, padding_color=(0, 0, 0)):
|
| 156 |
+
h, w = image.shape[:2]
|
| 157 |
+
try:
|
| 158 |
+
new_w, new_h = calculate_new_size(w, h, target_area, divisor)
|
| 159 |
+
except:
|
| 160 |
+
aspect_ratio = w / h
|
| 161 |
+
|
| 162 |
+
if keep_aspect_ratio:
|
| 163 |
+
new_h = math.sqrt(target_area / aspect_ratio)
|
| 164 |
+
new_w = target_area / new_h
|
| 165 |
+
else:
|
| 166 |
+
new_w = new_h = math.sqrt(target_area)
|
| 167 |
+
|
| 168 |
+
new_w, new_h = int((new_w // divisor) * divisor), int((new_h // divisor) * divisor)
|
| 169 |
+
|
| 170 |
+
interpolation = cv2.INTER_AREA if (new_w * new_h < w * h) else cv2.INTER_LINEAR
|
| 171 |
+
|
| 172 |
+
resized_image = padding_resize(image, height=new_h, width=new_w, padding_color=padding_color,
|
| 173 |
+
interpolation=interpolation)
|
| 174 |
+
return resized_image
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def padding_resize(img_ori, height=512, width=512, padding_color=(0, 0, 0), interpolation=cv2.INTER_LINEAR):
|
| 178 |
+
ori_height = img_ori.shape[0]
|
| 179 |
+
ori_width = img_ori.shape[1]
|
| 180 |
+
channel = img_ori.shape[2]
|
| 181 |
+
|
| 182 |
+
img_pad = np.zeros((height, width, channel))
|
| 183 |
+
if channel == 1:
|
| 184 |
+
img_pad[:, :, 0] = padding_color[0]
|
| 185 |
+
else:
|
| 186 |
+
img_pad[:, :, 0] = padding_color[0]
|
| 187 |
+
img_pad[:, :, 1] = padding_color[1]
|
| 188 |
+
img_pad[:, :, 2] = padding_color[2]
|
| 189 |
+
|
| 190 |
+
if (ori_height / ori_width) > (height / width):
|
| 191 |
+
new_width = int(height / ori_height * ori_width)
|
| 192 |
+
img = cv2.resize(img_ori, (new_width, height), interpolation=interpolation)
|
| 193 |
+
padding = int((width - new_width) / 2)
|
| 194 |
+
if len(img.shape) == 2:
|
| 195 |
+
img = img[:, :, np.newaxis]
|
| 196 |
+
img_pad[:, padding: padding + new_width, :] = img
|
| 197 |
+
else:
|
| 198 |
+
new_height = int(width / ori_width * ori_height)
|
| 199 |
+
img = cv2.resize(img_ori, (width, new_height), interpolation=interpolation)
|
| 200 |
+
padding = int((height - new_height) / 2)
|
| 201 |
+
if len(img.shape) == 2:
|
| 202 |
+
img = img[:, :, np.newaxis]
|
| 203 |
+
img_pad[padding: padding + new_height, :, :] = img
|
| 204 |
+
|
| 205 |
+
img_pad = np.uint8(img_pad)
|
| 206 |
+
|
| 207 |
+
return img_pad
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def get_frame_indices(frame_num, video_fps, clip_length, train_fps):
|
| 211 |
+
|
| 212 |
+
start_frame = 0
|
| 213 |
+
times = np.arange(0, clip_length) / train_fps
|
| 214 |
+
frame_indices = start_frame + np.round(times * video_fps).astype(int)
|
| 215 |
+
frame_indices = np.clip(frame_indices, 0, frame_num - 1)
|
| 216 |
+
|
| 217 |
+
return frame_indices.tolist()
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def get_face_bboxes(kp2ds, scale, image_shape):
|
| 221 |
+
h, w = image_shape
|
| 222 |
+
kp2ds_face = kp2ds.copy()[1:] * (w, h)
|
| 223 |
+
|
| 224 |
+
min_x, min_y = np.min(kp2ds_face, axis=0)
|
| 225 |
+
max_x, max_y = np.max(kp2ds_face, axis=0)
|
| 226 |
+
|
| 227 |
+
initial_width = max_x - min_x
|
| 228 |
+
initial_height = max_y - min_y
|
| 229 |
+
|
| 230 |
+
initial_area = initial_width * initial_height
|
| 231 |
+
|
| 232 |
+
expanded_area = initial_area * scale
|
| 233 |
+
|
| 234 |
+
new_width = np.sqrt(expanded_area * (initial_width / initial_height))
|
| 235 |
+
new_height = np.sqrt(expanded_area * (initial_height / initial_width))
|
| 236 |
+
|
| 237 |
+
delta_width = (new_width - initial_width) / 2
|
| 238 |
+
delta_height = (new_height - initial_height) / 4
|
| 239 |
+
|
| 240 |
+
expanded_min_x = max(min_x - delta_width, 0)
|
| 241 |
+
expanded_max_x = min(max_x + delta_width, w)
|
| 242 |
+
expanded_min_y = max(min_y - 3 * delta_height, 0)
|
| 243 |
+
expanded_max_y = min(max_y + delta_height, h)
|
| 244 |
+
|
| 245 |
return [int(expanded_min_x), int(expanded_max_x), int(expanded_min_y), int(expanded_max_y)]
|