Spaces:
Running
Running
space update
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ from v1.usta_tokenizer import UstaTokenizer
|
|
| 8 |
|
| 9 |
|
| 10 |
# Load the model and tokenizer
|
| 11 |
-
def load_model():
|
| 12 |
try:
|
| 13 |
u_tokenizer = UstaTokenizer("v1/tokenizer.json")
|
| 14 |
print("β
Tokenizer loaded successfully! vocab size:", len(u_tokenizer.vocab))
|
|
@@ -29,66 +29,96 @@ def load_model():
|
|
| 29 |
num_layers=num_layers
|
| 30 |
)
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
if os.path.exists(model_path):
|
| 69 |
try:
|
| 70 |
u_model.load_state_dict(torch.load(model_path, map_location="cpu", weights_only=False))
|
| 71 |
u_model.eval()
|
| 72 |
print("β
Model weights loaded successfully!")
|
|
|
|
| 73 |
except Exception as e:
|
| 74 |
print(f"β οΈ Warning: Could not load trained weights: {e}")
|
| 75 |
print("Using random initialization.")
|
|
|
|
| 76 |
else:
|
| 77 |
print(f"β οΈ Model file not found at {model_path}. Using random initialization.")
|
| 78 |
-
|
| 79 |
-
return u_model, u_tokenizer
|
| 80 |
|
| 81 |
except Exception as e:
|
| 82 |
print(f"β Error loading model: {e}")
|
| 83 |
raise e
|
| 84 |
|
|
|
|
|
|
|
|
|
|
| 85 |
# Initialize model and tokenizer globally
|
| 86 |
try:
|
| 87 |
-
model, tokenizer = load_model()
|
| 88 |
print("π UstaModel and tokenizer initialized successfully!")
|
| 89 |
except Exception as e:
|
| 90 |
print(f"β Failed to initialize model: {e}")
|
| 91 |
-
model, tokenizer = None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def respond(
|
| 94 |
message,
|
|
@@ -145,28 +175,65 @@ def respond(
|
|
| 145 |
"""
|
| 146 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 147 |
"""
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
if __name__ == "__main__":
|
| 172 |
demo.launch()
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
# Load the model and tokenizer
|
| 11 |
+
def load_model(custom_model_path=None):
|
| 12 |
try:
|
| 13 |
u_tokenizer = UstaTokenizer("v1/tokenizer.json")
|
| 14 |
print("β
Tokenizer loaded successfully! vocab size:", len(u_tokenizer.vocab))
|
|
|
|
| 29 |
num_layers=num_layers
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Determine which model file to use
|
| 33 |
+
if custom_model_path and os.path.exists(custom_model_path):
|
| 34 |
+
model_path = custom_model_path
|
| 35 |
+
print(f"π― Using uploaded model: {model_path}")
|
| 36 |
+
else:
|
| 37 |
+
model_path = "v1/u_model.pth"
|
| 38 |
+
|
| 39 |
+
if not os.path.exists(model_path):
|
| 40 |
+
print("β Model file not found at", model_path)
|
| 41 |
+
# Download the model file from GitHub
|
| 42 |
+
try:
|
| 43 |
+
print("π₯ Downloading model weights from GitHub...")
|
| 44 |
+
import requests
|
| 45 |
+
url = "https://github.com/malibayram/llm-from-scratch/raw/main/u_model_4000.pth"
|
| 46 |
+
|
| 47 |
+
headers = {
|
| 48 |
+
'Accept': 'application/octet-stream',
|
| 49 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
response = requests.get(url, headers=headers)
|
| 53 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 54 |
+
|
| 55 |
+
# Check if we got a proper binary file (PyTorch files start with specific bytes)
|
| 56 |
+
if response.content[:4] != b'PK\x03\x04' and b'<html' in response.content[:100].lower():
|
| 57 |
+
raise Exception("Downloaded HTML instead of binary file - check URL")
|
| 58 |
+
|
| 59 |
+
print(f"π¦ Downloaded {len(response.content)} bytes")
|
| 60 |
+
|
| 61 |
+
# Create v1 directory if it doesn't exist
|
| 62 |
+
os.makedirs("v1", exist_ok=True)
|
| 63 |
+
|
| 64 |
+
# Save the model weights to the local file system
|
| 65 |
+
with open(model_path, "wb") as f:
|
| 66 |
+
f.write(response.content)
|
| 67 |
+
print("β
Model weights saved successfully!")
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"β Failed to download model weights: {e}")
|
| 70 |
+
print("Using random initialization.")
|
| 71 |
|
| 72 |
if os.path.exists(model_path):
|
| 73 |
try:
|
| 74 |
u_model.load_state_dict(torch.load(model_path, map_location="cpu", weights_only=False))
|
| 75 |
u_model.eval()
|
| 76 |
print("β
Model weights loaded successfully!")
|
| 77 |
+
return u_model, u_tokenizer, f"β
Model loaded from: {model_path}"
|
| 78 |
except Exception as e:
|
| 79 |
print(f"β οΈ Warning: Could not load trained weights: {e}")
|
| 80 |
print("Using random initialization.")
|
| 81 |
+
return u_model, u_tokenizer, f"β οΈ Failed to load weights: {e}"
|
| 82 |
else:
|
| 83 |
print(f"β οΈ Model file not found at {model_path}. Using random initialization.")
|
| 84 |
+
return u_model, u_tokenizer, "β οΈ Using random initialization"
|
|
|
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
print(f"β Error loading model: {e}")
|
| 88 |
raise e
|
| 89 |
|
| 90 |
+
# Global model variables
|
| 91 |
+
model, tokenizer, model_status = None, None, "Not loaded"
|
| 92 |
+
|
| 93 |
# Initialize model and tokenizer globally
|
| 94 |
try:
|
| 95 |
+
model, tokenizer, model_status = load_model()
|
| 96 |
print("π UstaModel and tokenizer initialized successfully!")
|
| 97 |
except Exception as e:
|
| 98 |
print(f"β Failed to initialize model: {e}")
|
| 99 |
+
model, tokenizer, model_status = None, None, f"β Error: {e}"
|
| 100 |
+
|
| 101 |
+
def update_model(uploaded_file):
|
| 102 |
+
"""Update the model when a new file is uploaded"""
|
| 103 |
+
global model, tokenizer, model_status
|
| 104 |
+
|
| 105 |
+
if uploaded_file is None:
|
| 106 |
+
return "β No file uploaded"
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
# Load the new model
|
| 110 |
+
new_model, new_tokenizer, status = load_model(uploaded_file.name)
|
| 111 |
+
|
| 112 |
+
# Update global variables
|
| 113 |
+
model = new_model
|
| 114 |
+
tokenizer = new_tokenizer
|
| 115 |
+
model_status = status
|
| 116 |
+
|
| 117 |
+
return status
|
| 118 |
+
except Exception as e:
|
| 119 |
+
error_msg = f"β Failed to load uploaded model: {e}"
|
| 120 |
+
model_status = error_msg
|
| 121 |
+
return error_msg
|
| 122 |
|
| 123 |
def respond(
|
| 124 |
message,
|
|
|
|
| 175 |
"""
|
| 176 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 177 |
"""
|
| 178 |
+
|
| 179 |
+
# Create the interface with file upload
|
| 180 |
+
with gr.Blocks(title="π€ Usta Model Chat", theme=gr.themes.Soft()) as demo:
|
| 181 |
+
gr.Markdown("# π€ Usta Model Chat")
|
| 182 |
+
gr.Markdown("Chat with a custom transformer language model built from scratch! This model specializes in geographical knowledge including countries, capitals, and cities.")
|
| 183 |
+
|
| 184 |
+
with gr.Row():
|
| 185 |
+
with gr.Column(scale=2):
|
| 186 |
+
# Model upload section
|
| 187 |
+
with gr.Group():
|
| 188 |
+
gr.Markdown("### π Model Upload (Optional)")
|
| 189 |
+
model_file = gr.File(
|
| 190 |
+
label="Upload your own model.pth file",
|
| 191 |
+
file_types=[".pth", ".pt"],
|
| 192 |
+
info="Upload a custom UstaModel checkpoint to use instead of the default model"
|
| 193 |
+
)
|
| 194 |
+
upload_btn = gr.Button("Load Model", variant="primary")
|
| 195 |
+
model_status_display = gr.Textbox(
|
| 196 |
+
label="Model Status",
|
| 197 |
+
value=model_status,
|
| 198 |
+
interactive=False,
|
| 199 |
+
info="Shows the current model loading status"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
with gr.Column(scale=1):
|
| 203 |
+
# Settings
|
| 204 |
+
with gr.Group():
|
| 205 |
+
gr.Markdown("### βοΈ Generation Settings")
|
| 206 |
+
system_msg = gr.Textbox(
|
| 207 |
+
value="You are Usta, a geographical knowledge assistant trained from scratch.",
|
| 208 |
+
label="System message",
|
| 209 |
+
info="Note: This model focuses on geographical knowledge"
|
| 210 |
+
)
|
| 211 |
+
max_tokens = gr.Slider(minimum=1, maximum=30, value=20, step=1, label="Max new tokens")
|
| 212 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature")
|
| 213 |
+
top_p = gr.Slider(
|
| 214 |
+
minimum=0.1,
|
| 215 |
+
maximum=1.0,
|
| 216 |
+
value=0.95,
|
| 217 |
+
step=0.05,
|
| 218 |
+
label="Top-p (nucleus sampling)",
|
| 219 |
+
info="Note: This parameter is not used by UstaModel"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Chat interface
|
| 223 |
+
chatbot = gr.ChatInterface(
|
| 224 |
+
respond,
|
| 225 |
+
additional_inputs=[system_msg, max_tokens, temperature, top_p],
|
| 226 |
+
chatbot=gr.Chatbot(height=400),
|
| 227 |
+
title=None, # We already have title above
|
| 228 |
+
description=None # We already have description above
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# Event handlers
|
| 232 |
+
upload_btn.click(
|
| 233 |
+
update_model,
|
| 234 |
+
inputs=[model_file],
|
| 235 |
+
outputs=[model_status_display]
|
| 236 |
+
)
|
| 237 |
|
| 238 |
if __name__ == "__main__":
|
| 239 |
demo.launch()
|