import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr import spaces device = 'cuda' if torch.cuda.is_available() else 'cpu' @spaces.GPU def load_model(): tokenizer = AutoTokenizer.from_pretrained("alibidaran/medical_transcription_generator") model = AutoModelForCausalLM.from_pretrained("alibidaran/medical_transcription_generator").to(device) return model,tokenizer @spaces.GPU def generate_text(Text,Max_length,Temperature): model,tokenizer=load_model() torch.manual_seed(32) tokenizer.pad_token_id=tokenizer.eos_token_id with torch.no_grad(): input_ids = tokenizer(Text, return_tensors="pt")["input_ids"].to(device) attn_mask=tokenizer(Text, return_tensors="pt")["attention_mask"].to(device) output=model.generate(input_ids=input_ids,attention_mask=attn_mask,max_new_tokens=Max_length,do_sample=True, temperature=Temperature, top_p=0.90,top_k=10) return tokenizer.decode(output[0]) demo=gr.Interface( generate_text, ['text', gr.Slider(50,2000,value=100,step=10), gr.Slider(0,2,value=0.7,step=0.1)], 'text', theme=gr.themes.Base(primary_hue='blue',secondary_hue='cyan'), description="Medical Trasncript Generator" ) demo.launch()