Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import timm
|
| 5 |
+
from timm import create_model
|
| 6 |
+
from timm.models.layers import PatchEmbed
|
| 7 |
+
from torchvision.models.feature_extraction import create_feature_extractor
|
| 8 |
+
from torchvision.transforms import functional as F
|
| 9 |
+
|
| 10 |
+
cait_model = create_model("cait_xxs24_224.fb_dist_in1k", pretrained=True).eval()
|
| 11 |
+
transform = timm.data.create_transform(
|
| 12 |
+
**timm.data.resolve_data_config(cait_model.pretrained_cfg)
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
patch_size = 16
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def create_attn_extractor(model, block_id=0):
|
| 19 |
+
"""Creates a model that produces the softmax attention scores.
|
| 20 |
+
References:
|
| 21 |
+
https://github.com/huggingface/pytorch-image-models/discussions/926
|
| 22 |
+
"""
|
| 23 |
+
feature_extractor = create_feature_extractor(
|
| 24 |
+
cait_model,
|
| 25 |
+
return_nodes=[f"blocks_token_only.{block_id}.attn.softmax"],
|
| 26 |
+
tracer_kwargs={"leaf_modules": [PatchEmbed]},
|
| 27 |
+
)
|
| 28 |
+
return feature_extractor
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_cls_attention_map(
|
| 32 |
+
image, attn_score_dict=out, block_key="blocks_token_only.0.attn.softmax"
|
| 33 |
+
):
|
| 34 |
+
"""Prepares attention maps so that they can be visualized."""
|
| 35 |
+
w_featmap = image.shape[3] // patch_size
|
| 36 |
+
h_featmap = image.shape[2] // patch_size
|
| 37 |
+
|
| 38 |
+
attention_scores = attn_score_dict[block_key]
|
| 39 |
+
nh = attention_scores.shape[1] # Number of attention heads.
|
| 40 |
+
|
| 41 |
+
# Taking the representations from CLS token.
|
| 42 |
+
attentions = attention_scores[0, :, 0, 1:].reshape(nh, -1)
|
| 43 |
+
print(attentions.shape)
|
| 44 |
+
|
| 45 |
+
# Reshape the attention scores to resemble mini patches.
|
| 46 |
+
attentions = attentions.reshape(nh, w_featmap, h_featmap)
|
| 47 |
+
print(attentions.shape)
|
| 48 |
+
|
| 49 |
+
# Resize the attention patches to 224x224 (224: 14x16)
|
| 50 |
+
attentions = F.resize(
|
| 51 |
+
attentions,
|
| 52 |
+
size=(h_featmap * patch_size, w_featmap * patch_size),
|
| 53 |
+
interpolation=3,
|
| 54 |
+
)
|
| 55 |
+
print(attentions.shape)
|
| 56 |
+
|
| 57 |
+
return attentions
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def generate_plot(processed_map):
|
| 61 |
+
"""Generates a class attention map plot."""
|
| 62 |
+
fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(13, 13))
|
| 63 |
+
img_count = 0
|
| 64 |
+
|
| 65 |
+
for i in range(processed_map.shape[0]):
|
| 66 |
+
if img_count < processed_map.shape[0]:
|
| 67 |
+
axes[i].imshow(processed_map[img_count].numpy())
|
| 68 |
+
axes[i].title.set_text(f"Attention head: {img_count}")
|
| 69 |
+
axes[i].axis("off")
|
| 70 |
+
img_count += 1
|
| 71 |
+
|
| 72 |
+
fig.tight_layout()
|
| 73 |
+
return fig
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def generate_class_attn_map(image, block_id=0):
|
| 77 |
+
"""Collates the above utilities together for generating
|
| 78 |
+
a class attention map."""
|
| 79 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 80 |
+
feature_extractor = create_attn_extractor(cait_model, block_id)
|
| 81 |
+
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
out = feature_extractor(image_tensor)
|
| 84 |
+
|
| 85 |
+
block_key = f"blocks_token_only.{block_id}.attn.softmax"
|
| 86 |
+
processed_cls_attn_map = get_cls_attention_map(image_tensor, out, block_key)
|
| 87 |
+
return generate_plot(processed_cls_attn_map)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
title = "Class Attention Maps"
|
| 91 |
+
article = "Class attention maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.). We use the [cait_xxs24_224](https://huggingface.co/timm/cait_xxs24_224.fb_dist_in1k) variant of CaiT. One can find all the other variants [here](https://huggingface.co/models?search=cait)."
|
| 92 |
+
|
| 93 |
+
iface = gr.Interface(
|
| 94 |
+
generate_class_attn_map,
|
| 95 |
+
inputs=[
|
| 96 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
| 97 |
+
gr.Slider(0, 1, value=0, step=1, label="Block ID", info="Transformer Block ID"),
|
| 98 |
+
],
|
| 99 |
+
outputs=[gr.Plot(type="auto").style()],
|
| 100 |
+
title=title,
|
| 101 |
+
article=article,
|
| 102 |
+
allow_flagging="never",
|
| 103 |
+
cache_examples=True,
|
| 104 |
+
examples=[["./bird.png", 0]],
|
| 105 |
+
)
|
| 106 |
+
iface.launch()
|