Spaces:
Runtime error
Runtime error
fix: constants.
Browse files
app.py
CHANGED
|
@@ -9,12 +9,12 @@ from torchvision.models.feature_extraction import create_feature_extractor
|
|
| 9 |
from torchvision.transforms import functional as F
|
| 10 |
import glob
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
**timm.data.resolve_data_config(
|
| 15 |
)
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
|
| 20 |
def create_attn_extractor(block_id=0):
|
|
@@ -23,7 +23,7 @@ def create_attn_extractor(block_id=0):
|
|
| 23 |
https://github.com/huggingface/pytorch-image-models/discussions/926
|
| 24 |
"""
|
| 25 |
feature_extractor = create_feature_extractor(
|
| 26 |
-
|
| 27 |
return_nodes=[f"blocks_token_only.{block_id}.attn.softmax"],
|
| 28 |
tracer_kwargs={"leaf_modules": [PatchEmbed]},
|
| 29 |
)
|
|
@@ -34,8 +34,8 @@ def get_cls_attention_map(
|
|
| 34 |
image, attn_score_dict, block_key="blocks_token_only.0.attn.softmax"
|
| 35 |
):
|
| 36 |
"""Prepares attention maps so that they can be visualized."""
|
| 37 |
-
w_featmap = image.shape[3] //
|
| 38 |
-
h_featmap = image.shape[2] //
|
| 39 |
|
| 40 |
attention_scores = attn_score_dict[block_key]
|
| 41 |
nh = attention_scores.shape[1] # Number of attention heads.
|
|
@@ -51,7 +51,7 @@ def get_cls_attention_map(
|
|
| 51 |
# Resize the attention patches to 224x224 (224: 14x16)
|
| 52 |
attentions = F.resize(
|
| 53 |
attentions,
|
| 54 |
-
size=(h_featmap *
|
| 55 |
interpolation=3,
|
| 56 |
)
|
| 57 |
print(attentions.shape)
|
|
@@ -85,8 +85,8 @@ def serialize_images(processed_map):
|
|
| 85 |
def generate_class_attn_map(image, block_id=0):
|
| 86 |
"""Collates the above utilities together for generating
|
| 87 |
a class attention map."""
|
| 88 |
-
image_tensor =
|
| 89 |
-
feature_extractor = create_attn_extractor(
|
| 90 |
|
| 91 |
with torch.no_grad():
|
| 92 |
out = feature_extractor(image_tensor)
|
|
|
|
| 9 |
from torchvision.transforms import functional as F
|
| 10 |
import glob
|
| 11 |
|
| 12 |
+
CAIT_MODEL = create_model("cait_xxs24_224.fb_dist_in1k", pretrained=True).eval()
|
| 13 |
+
TRANSFORM = timm.data.create_transform(
|
| 14 |
+
**timm.data.resolve_data_config(CAIT_MODEL.pretrained_cfg)
|
| 15 |
)
|
| 16 |
|
| 17 |
+
PATCH_SIZE = 16
|
| 18 |
|
| 19 |
|
| 20 |
def create_attn_extractor(block_id=0):
|
|
|
|
| 23 |
https://github.com/huggingface/pytorch-image-models/discussions/926
|
| 24 |
"""
|
| 25 |
feature_extractor = create_feature_extractor(
|
| 26 |
+
CAIT_MODEL,
|
| 27 |
return_nodes=[f"blocks_token_only.{block_id}.attn.softmax"],
|
| 28 |
tracer_kwargs={"leaf_modules": [PatchEmbed]},
|
| 29 |
)
|
|
|
|
| 34 |
image, attn_score_dict, block_key="blocks_token_only.0.attn.softmax"
|
| 35 |
):
|
| 36 |
"""Prepares attention maps so that they can be visualized."""
|
| 37 |
+
w_featmap = image.shape[3] // PATCH_SIZE
|
| 38 |
+
h_featmap = image.shape[2] // PATCH_SIZE
|
| 39 |
|
| 40 |
attention_scores = attn_score_dict[block_key]
|
| 41 |
nh = attention_scores.shape[1] # Number of attention heads.
|
|
|
|
| 51 |
# Resize the attention patches to 224x224 (224: 14x16)
|
| 52 |
attentions = F.resize(
|
| 53 |
attentions,
|
| 54 |
+
size=(h_featmap * PATCH_SIZE, w_featmap * PATCH_SIZE),
|
| 55 |
interpolation=3,
|
| 56 |
)
|
| 57 |
print(attentions.shape)
|
|
|
|
| 85 |
def generate_class_attn_map(image, block_id=0):
|
| 86 |
"""Collates the above utilities together for generating
|
| 87 |
a class attention map."""
|
| 88 |
+
image_tensor = TRANSFORM(image).unsqueeze(0)
|
| 89 |
+
feature_extractor = create_attn_extractor(block_id)
|
| 90 |
|
| 91 |
with torch.no_grad():
|
| 92 |
out = feature_extractor(image_tensor)
|