Spaces:
Build error
Build error
AlshimaaGamalAlsaied
commited on
Commit
·
33c3d7d
1
Parent(s):
7b1080a
update
Browse files
app.py
CHANGED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
#import torch
|
| 3 |
+
import yolov7
|
| 4 |
+
import subprocess
|
| 5 |
+
import tempfile
|
| 6 |
+
import time
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
import cv2
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Images
|
| 15 |
+
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 16 |
+
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
| 17 |
+
|
| 18 |
+
def image_fn(
|
| 19 |
+
image: gr.inputs.Image = None,
|
| 20 |
+
model_path: gr.inputs.Dropdown = None,
|
| 21 |
+
image_size: gr.inputs.Slider = 640,
|
| 22 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
| 23 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
| 24 |
+
):
|
| 25 |
+
"""
|
| 26 |
+
YOLOv7 inference function
|
| 27 |
+
Args:
|
| 28 |
+
image: Input image
|
| 29 |
+
model_path: Path to the model
|
| 30 |
+
image_size: Image size
|
| 31 |
+
conf_threshold: Confidence threshold
|
| 32 |
+
iou_threshold: IOU threshold
|
| 33 |
+
Returns:
|
| 34 |
+
Rendered image
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 38 |
+
model.conf = conf_threshold
|
| 39 |
+
model.iou = iou_threshold
|
| 40 |
+
results = model([image], size=image_size)
|
| 41 |
+
return results.render()[0]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
| 46 |
+
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 47 |
+
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
| 48 |
+
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
| 49 |
+
|
| 50 |
+
suffix = Path(video_file).suffix
|
| 51 |
+
|
| 52 |
+
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
| 53 |
+
subprocess.call(
|
| 54 |
+
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Reader of clip file
|
| 58 |
+
cap = cv2.VideoCapture(clip_temp_file.name)
|
| 59 |
+
|
| 60 |
+
# This is an intermediary temp file where we'll write the video to
|
| 61 |
+
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
| 62 |
+
# with ffmpeg at the end of the function here.
|
| 63 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
| 64 |
+
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
| 65 |
+
|
| 66 |
+
num_frames = 0
|
| 67 |
+
max_frames = duration * 30
|
| 68 |
+
while cap.isOpened():
|
| 69 |
+
try:
|
| 70 |
+
ret, frame = cap.read()
|
| 71 |
+
if not ret:
|
| 72 |
+
break
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(e)
|
| 75 |
+
continue
|
| 76 |
+
print("FRAME DTYPE", type(frame))
|
| 77 |
+
out.write(model(frame, conf_thres, iou_thres))
|
| 78 |
+
num_frames += 1
|
| 79 |
+
print("Processed {} frames".format(num_frames))
|
| 80 |
+
if num_frames == max_frames:
|
| 81 |
+
break
|
| 82 |
+
|
| 83 |
+
out.release()
|
| 84 |
+
|
| 85 |
+
# Aforementioned hackiness
|
| 86 |
+
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
| 87 |
+
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
| 88 |
+
|
| 89 |
+
return out_file.name
|
| 90 |
+
|
| 91 |
+
image_interface = gr.Interface(
|
| 92 |
+
fn=image_fn,
|
| 93 |
+
inputs=[
|
| 94 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
| 95 |
+
gr.inputs.Dropdown(
|
| 96 |
+
choices=[
|
| 97 |
+
"alshimaa/model_baseline",
|
| 98 |
+
"alshimaa/model_yolo7",
|
| 99 |
+
#"kadirnar/yolov7-v0.1",
|
| 100 |
+
],
|
| 101 |
+
default="alshimaa/model_baseline",
|
| 102 |
+
label="Model",
|
| 103 |
+
)
|
| 104 |
+
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
| 105 |
+
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
| 106 |
+
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
| 107 |
+
],
|
| 108 |
+
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
| 109 |
+
title="Smart Environmental Eye (SEE)",
|
| 110 |
+
examples=[['image1.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/model_yolo7', 640, 0.25, 0.45]],
|
| 111 |
+
cache_examples=True,
|
| 112 |
+
theme='huggingface',
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
video_interface = gr.Interface(
|
| 117 |
+
fn=video_fn,
|
| 118 |
+
inputs=[
|
| 119 |
+
gr.Video(type="file"),
|
| 120 |
+
gr.inputs.Dropdown(
|
| 121 |
+
choices=[
|
| 122 |
+
"alshimaa/model_baseline",
|
| 123 |
+
"alshimaa/model_yolo7",
|
| 124 |
+
#"kadirnar/yolov7-v0.1",
|
| 125 |
+
],
|
| 126 |
+
default="alshimaa/model_baseline",
|
| 127 |
+
label="Model",
|
| 128 |
+
),
|
| 129 |
+
],
|
| 130 |
+
outputs=gr.outputs.Video(type="filepath", format="mp4", label="Output Video"),
|
| 131 |
+
# examples=[
|
| 132 |
+
# ["video.mp4", 0.25, 0.45, 0, 2],
|
| 133 |
+
|
| 134 |
+
# ],
|
| 135 |
+
title="Smart Environmental Eye (SEE)",
|
| 136 |
+
cache_examples=True,
|
| 137 |
+
theme='huggingface',
|
| 138 |
+
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
gr.TabbedInterface(
|
| 143 |
+
[image_interface, video_interface],
|
| 144 |
+
["Run on Images", "Run on Videos"],
|
| 145 |
+
).launch()
|
| 146 |
+
|
| 147 |
+
# import subprocess
|
| 148 |
+
# import tempfile
|
| 149 |
+
# import time
|
| 150 |
+
# from pathlib import Path
|
| 151 |
+
|
| 152 |
+
# import cv2
|
| 153 |
+
# import gradio as gr
|
| 154 |
+
|
| 155 |
+
# from inferer import Inferer
|
| 156 |
+
|
| 157 |
+
# pipeline = Inferer("alshimaa/model_yolo7", device='cuda')
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# def fn_image(image, conf_thres, iou_thres):
|
| 161 |
+
# return pipeline(image, conf_thres, iou_thres)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# def fn_video(video_file, conf_thres, iou_thres, start_sec, duration):
|
| 165 |
+
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
| 166 |
+
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
| 167 |
+
|
| 168 |
+
# suffix = Path(video_file).suffix
|
| 169 |
+
|
| 170 |
+
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
| 171 |
+
# subprocess.call(
|
| 172 |
+
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
| 173 |
+
# )
|
| 174 |
+
|
| 175 |
+
# # Reader of clip file
|
| 176 |
+
# cap = cv2.VideoCapture(clip_temp_file.name)
|
| 177 |
+
|
| 178 |
+
# # This is an intermediary temp file where we'll write the video to
|
| 179 |
+
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
| 180 |
+
# # with ffmpeg at the end of the function here.
|
| 181 |
+
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
| 182 |
+
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
| 183 |
+
|
| 184 |
+
# num_frames = 0
|
| 185 |
+
# max_frames = duration * 30
|
| 186 |
+
# while cap.isOpened():
|
| 187 |
+
# try:
|
| 188 |
+
# ret, frame = cap.read()
|
| 189 |
+
# if not ret:
|
| 190 |
+
# break
|
| 191 |
+
# except Exception as e:
|
| 192 |
+
# print(e)
|
| 193 |
+
# continue
|
| 194 |
+
# print("FRAME DTYPE", type(frame))
|
| 195 |
+
# out.write(pipeline(frame, conf_thres, iou_thres))
|
| 196 |
+
# num_frames += 1
|
| 197 |
+
# print("Processed {} frames".format(num_frames))
|
| 198 |
+
# if num_frames == max_frames:
|
| 199 |
+
# break
|
| 200 |
+
|
| 201 |
+
# out.release()
|
| 202 |
+
|
| 203 |
+
# # Aforementioned hackiness
|
| 204 |
+
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
| 205 |
+
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
| 206 |
+
|
| 207 |
+
# return out_file.name
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# image_interface = gr.Interface(
|
| 211 |
+
# fn=fn_image,
|
| 212 |
+
# inputs=[
|
| 213 |
+
# "image",
|
| 214 |
+
# gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
|
| 215 |
+
# gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
|
| 216 |
+
# ],
|
| 217 |
+
# outputs=gr.Image(type="file"),
|
| 218 |
+
# examples=[["image1.jpg", 0.5, 0.5], ["image2.jpg", 0.25, 0.45], ["image3.jpg", 0.25, 0.45]],
|
| 219 |
+
# title="Smart Environmental Eye (SEE)",
|
| 220 |
+
# allow_flagging=False,
|
| 221 |
+
# allow_screenshot=False,
|
| 222 |
+
# )
|
| 223 |
+
|
| 224 |
+
# video_interface = gr.Interface(
|
| 225 |
+
# fn=fn_video,
|
| 226 |
+
# inputs=[
|
| 227 |
+
# gr.Video(type="file"),
|
| 228 |
+
# gr.Slider(0, 1, value=0.25, label="Confidence Threshold"),
|
| 229 |
+
# gr.Slider(0, 1, value=0.45, label="IOU Threshold"),
|
| 230 |
+
# gr.Slider(0, 10, value=0, label="Start Second", step=1),
|
| 231 |
+
# gr.Slider(0, 10 if pipeline.device.type != 'cpu' else 3, value=4, label="Duration", step=1),
|
| 232 |
+
# ],
|
| 233 |
+
# outputs=gr.Video(type="file", format="mp4"),
|
| 234 |
+
# # examples=[
|
| 235 |
+
# # ["video.mp4", 0.25, 0.45, 0, 2],
|
| 236 |
+
|
| 237 |
+
# # ],
|
| 238 |
+
# title="Smart Environmental Eye (SEE)",
|
| 239 |
+
# allow_flagging=False,
|
| 240 |
+
# allow_screenshot=False,
|
| 241 |
+
# )
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
# if __name__ == "__main__":
|
| 246 |
+
# gr.TabbedInterface(
|
| 247 |
+
# [image_interface, video_interface],
|
| 248 |
+
# ["Run on Images", "Run on Videos"],
|
| 249 |
+
# ).launch()
|
| 250 |
+
|