Spaces:
Build error
Build error
AlshimaaGamalAlsaied
commited on
Commit
·
bc98293
1
Parent(s):
47843ee
commit
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ import gradio as gr
|
|
| 16 |
# o_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 17 |
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
| 18 |
|
| 19 |
-
|
| 20 |
def image_fn(
|
| 21 |
image: gr.inputs.Image = None,
|
| 22 |
model_path: gr.inputs.Dropdown = None,
|
|
@@ -42,18 +42,64 @@ def image_fn(
|
|
| 42 |
results = model([image], size=image_size)
|
| 43 |
return results.render()[0]
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
fn=image_fn,
|
| 49 |
inputs=[
|
| 50 |
gr.inputs.Image(type="pil", label="Input Image"),
|
| 51 |
gr.inputs.Dropdown(
|
| 52 |
choices=[
|
| 53 |
-
"alshimaa/
|
| 54 |
#"kadirnar/yolov7-v0.1",
|
| 55 |
],
|
| 56 |
-
default="alshimaa/
|
| 57 |
label="Model",
|
| 58 |
)
|
| 59 |
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
|
@@ -61,140 +107,41 @@ demo_app = gr.Interface(
|
|
| 61 |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
| 62 |
],
|
| 63 |
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
| 64 |
-
title="
|
| 65 |
-
examples=[['
|
| 66 |
cache_examples=True,
|
| 67 |
-
live=True,
|
| 68 |
theme='huggingface',
|
| 69 |
)
|
| 70 |
-
demo_app.launch(debug=True, enable_queue=True)
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
#
|
| 88 |
-
#
|
| 89 |
-
# Rendered image
|
| 90 |
-
# """
|
| 91 |
-
|
| 92 |
-
# model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 93 |
-
# model.conf = conf_threshold
|
| 94 |
-
# model.iou = iou_threshold
|
| 95 |
-
# results = model([image], size=image_size)
|
| 96 |
-
# return results.render()[0]
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
| 101 |
-
# model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 102 |
-
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
| 103 |
-
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
| 104 |
-
|
| 105 |
-
# suffix = Path(video_file).suffix
|
| 106 |
-
|
| 107 |
-
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
| 108 |
-
# subprocess.call(
|
| 109 |
-
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
| 110 |
-
# )
|
| 111 |
-
|
| 112 |
-
# # Reader of clip file
|
| 113 |
-
# cap = cv2.VideoCapture(clip_temp_file.name)
|
| 114 |
-
|
| 115 |
-
# # This is an intermediary temp file where we'll write the video to
|
| 116 |
-
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
| 117 |
-
# # with ffmpeg at the end of the function here.
|
| 118 |
-
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
| 119 |
-
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
| 120 |
-
|
| 121 |
-
# num_frames = 0
|
| 122 |
-
# max_frames = duration * 30
|
| 123 |
-
# while cap.isOpened():
|
| 124 |
-
# try:
|
| 125 |
-
# ret, frame = cap.read()
|
| 126 |
-
# if not ret:
|
| 127 |
-
# break
|
| 128 |
-
# except Exception as e:
|
| 129 |
-
# print(e)
|
| 130 |
-
# continue
|
| 131 |
-
# print("FRAME DTYPE", type(frame))
|
| 132 |
-
# out.write(model([frame], conf_thres, iou_thres))
|
| 133 |
-
# num_frames += 1
|
| 134 |
-
# print("Processed {} frames".format(num_frames))
|
| 135 |
-
# if num_frames == max_frames:
|
| 136 |
-
# break
|
| 137 |
-
|
| 138 |
-
# out.release()
|
| 139 |
-
|
| 140 |
-
# # Aforementioned hackiness
|
| 141 |
-
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
| 142 |
-
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
| 143 |
-
|
| 144 |
-
# return out_file.name
|
| 145 |
-
|
| 146 |
-
# image_interface = gr.Interface(
|
| 147 |
-
# fn=image_fn,
|
| 148 |
-
# inputs=[
|
| 149 |
-
# gr.inputs.Image(type="pil", label="Input Image"),
|
| 150 |
-
# gr.inputs.Dropdown(
|
| 151 |
-
# choices=[
|
| 152 |
-
# "alshimaa/SEE_model_yolo7",
|
| 153 |
-
# #"kadirnar/yolov7-v0.1",
|
| 154 |
-
# ],
|
| 155 |
-
# default="alshimaa/SEE_model_yolo7",
|
| 156 |
-
# label="Model",
|
| 157 |
-
# )
|
| 158 |
-
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
| 159 |
-
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
| 160 |
-
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
| 161 |
-
# ],
|
| 162 |
-
# outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
| 163 |
-
# title="Smart Environmental Eye (SEE)",
|
| 164 |
-
# examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
|
| 165 |
-
# cache_examples=True,
|
| 166 |
-
# theme='huggingface',
|
| 167 |
-
# )
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
# video_interface = gr.Interface(
|
| 171 |
-
# fn=video_fn,
|
| 172 |
-
# inputs=[
|
| 173 |
-
# gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
|
| 174 |
-
# gr.inputs.Dropdown(
|
| 175 |
-
# choices=[
|
| 176 |
-
# "alshimaa/SEE_model_yolo7",
|
| 177 |
-
# #"kadirnar/yolov7-v0.1",
|
| 178 |
-
# ],
|
| 179 |
-
# default="alshimaa/SEE_model_yolo7",
|
| 180 |
-
# label="Model",
|
| 181 |
-
# ),
|
| 182 |
-
# ],
|
| 183 |
-
# outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
|
| 184 |
-
# # examples=[
|
| 185 |
-
# # ["video.mp4", 0.25, 0.45, 0, 2],
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
|
| 200 |
|
|
|
|
| 16 |
# o_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 17 |
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
| 18 |
|
| 19 |
+
|
| 20 |
def image_fn(
|
| 21 |
image: gr.inputs.Image = None,
|
| 22 |
model_path: gr.inputs.Dropdown = None,
|
|
|
|
| 42 |
results = model([image], size=image_size)
|
| 43 |
return results.render()[0]
|
| 44 |
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
| 48 |
+
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 49 |
+
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
| 50 |
+
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
| 51 |
|
| 52 |
+
suffix = Path(video_file).suffix
|
| 53 |
|
| 54 |
+
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
| 55 |
+
subprocess.call(
|
| 56 |
+
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Reader of clip file
|
| 60 |
+
cap = cv2.VideoCapture(clip_temp_file.name)
|
| 61 |
+
|
| 62 |
+
# This is an intermediary temp file where we'll write the video to
|
| 63 |
+
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
| 64 |
+
# with ffmpeg at the end of the function here.
|
| 65 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
| 66 |
+
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
| 67 |
+
|
| 68 |
+
num_frames = 0
|
| 69 |
+
max_frames = duration * 30
|
| 70 |
+
while cap.isOpened():
|
| 71 |
+
try:
|
| 72 |
+
ret, frame = cap.read()
|
| 73 |
+
if not ret:
|
| 74 |
+
break
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(e)
|
| 77 |
+
continue
|
| 78 |
+
print("FRAME DTYPE", type(frame))
|
| 79 |
+
out.write(model([frame], conf_thres, iou_thres))
|
| 80 |
+
num_frames += 1
|
| 81 |
+
print("Processed {} frames".format(num_frames))
|
| 82 |
+
if num_frames == max_frames:
|
| 83 |
+
break
|
| 84 |
+
|
| 85 |
+
out.release()
|
| 86 |
+
|
| 87 |
+
# Aforementioned hackiness
|
| 88 |
+
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
| 89 |
+
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
| 90 |
+
|
| 91 |
+
return out_file.name
|
| 92 |
+
|
| 93 |
+
image_interface = gr.Interface(
|
| 94 |
fn=image_fn,
|
| 95 |
inputs=[
|
| 96 |
gr.inputs.Image(type="pil", label="Input Image"),
|
| 97 |
gr.inputs.Dropdown(
|
| 98 |
choices=[
|
| 99 |
+
"alshimaa/SEE_model_yolo7",
|
| 100 |
#"kadirnar/yolov7-v0.1",
|
| 101 |
],
|
| 102 |
+
default="alshimaa/SEE_model_yolo7",
|
| 103 |
label="Model",
|
| 104 |
)
|
| 105 |
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
|
|
|
| 107 |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
| 108 |
],
|
| 109 |
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
| 110 |
+
title="Smart Environmental Eye (SEE)",
|
| 111 |
+
examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
|
| 112 |
cache_examples=True,
|
|
|
|
| 113 |
theme='huggingface',
|
| 114 |
)
|
|
|
|
| 115 |
|
| 116 |
+
|
| 117 |
+
video_interface = gr.Interface(
|
| 118 |
+
fn=video_fn,
|
| 119 |
+
inputs=[
|
| 120 |
+
gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
|
| 121 |
+
gr.inputs.Dropdown(
|
| 122 |
+
choices=[
|
| 123 |
+
"alshimaa/SEE_model_yolo7",
|
| 124 |
+
#"kadirnar/yolov7-v0.1",
|
| 125 |
+
],
|
| 126 |
+
default="alshimaa/SEE_model_yolo7",
|
| 127 |
+
label="Model",
|
| 128 |
+
),
|
| 129 |
+
],
|
| 130 |
+
outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
|
| 131 |
+
# examples=[
|
| 132 |
+
# ["video.mp4", 0.25, 0.45, 0, 2],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
# ],
|
| 135 |
+
title="Smart Environmental Eye (SEE)",
|
| 136 |
+
cache_examples=True,
|
| 137 |
+
theme='huggingface',
|
| 138 |
|
| 139 |
+
)
|
| 140 |
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
gr.TabbedInterface(
|
| 143 |
+
[image_interface, video_interface],
|
| 144 |
+
["Run on Images", "Run on Videos"],
|
| 145 |
+
).launch()
|
| 146 |
|
| 147 |
|