Jakob
commited on
Commit
·
67543b3
1
Parent(s):
44fb760
first
Browse files- requirements.txt +6 -0
- validation.py +87 -0
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain==0.0.188
|
| 2 |
+
openai
|
| 3 |
+
llama_index==0.6.12
|
| 4 |
+
pypdf
|
| 5 |
+
PyCryptodome
|
| 6 |
+
ratelimit
|
validation.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from llama_index import SimpleDirectoryReader, LLMPredictor, PromptHelper, StorageContext, ServiceContext, GPTVectorStoreIndex, load_index_from_storage
|
| 3 |
+
from langchain.chat_models import ChatOpenAI
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
import openai
|
| 8 |
+
from ratelimit import limits, sleep_and_retry
|
| 9 |
+
from langchain import HuggingFaceHub
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# fixing bugs
|
| 13 |
+
# 1. open ai key: https://stackoverflow.com/questions/76425556/tenacity-retryerror-retryerrorfuture-at-0x7f89bc35eb90-state-finished-raised
|
| 14 |
+
# 2. rate limit error in lang_chain default version - install langchain==0.0.188. https://github.com/jerryjliu/llama_index/issues/924
|
| 15 |
+
# 3. added true Config variable in langchain: https://github.com/pydantic/pydantic/issues/3320
|
| 16 |
+
# 4. deploy on huggingfaces https://huggingface.co/welcome
|
| 17 |
+
# create huggingfaces token https://huggingface.co/settings/tokens
|
| 18 |
+
# login: huggingface-cli login
|
| 19 |
+
# add requirements.txt file https://huggingface.co/docs/hub/spaces-dependencies
|
| 20 |
+
|
| 21 |
+
os.environ["OPENAI_API_KEY"] = os.environ.get("openai_key")
|
| 22 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 23 |
+
|
| 24 |
+
# Define the rate limit for API calls (requests per second)
|
| 25 |
+
RATE_LIMIT = 3
|
| 26 |
+
|
| 27 |
+
# Implement the rate limiting decorator
|
| 28 |
+
@sleep_and_retry
|
| 29 |
+
@limits(calls=RATE_LIMIT, period=1)
|
| 30 |
+
def create_service_context():
|
| 31 |
+
|
| 32 |
+
#constraint parameters
|
| 33 |
+
max_input_size = 4096
|
| 34 |
+
num_outputs = 512
|
| 35 |
+
max_chunk_overlap = 20
|
| 36 |
+
chunk_size_limit = 600
|
| 37 |
+
|
| 38 |
+
#allows the user to explicitly set certain constraint parameters
|
| 39 |
+
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)
|
| 40 |
+
|
| 41 |
+
#LLMPredictor is a wrapper class around LangChain's LLMChain that allows easy integration into LlamaIndex
|
| 42 |
+
llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
|
| 43 |
+
|
| 44 |
+
#constructs service_context
|
| 45 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
| 46 |
+
return service_context
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Implement the rate limiting decorator
|
| 50 |
+
@sleep_and_retry
|
| 51 |
+
@limits(calls=RATE_LIMIT, period=1)
|
| 52 |
+
def data_ingestion_indexing(directory_path):
|
| 53 |
+
|
| 54 |
+
#loads data from the specified directory path
|
| 55 |
+
documents = SimpleDirectoryReader(directory_path).load_data()
|
| 56 |
+
|
| 57 |
+
#when first building the index
|
| 58 |
+
index = GPTVectorStoreIndex.from_documents(
|
| 59 |
+
documents, service_context=create_service_context()
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
#persist index to disk, default "storage" folder
|
| 63 |
+
index.storage_context.persist()
|
| 64 |
+
|
| 65 |
+
return index
|
| 66 |
+
|
| 67 |
+
def data_querying(input_text):
|
| 68 |
+
|
| 69 |
+
#rebuild storage context
|
| 70 |
+
storage_context = StorageContext.from_defaults(persist_dir="./storage")
|
| 71 |
+
|
| 72 |
+
#loads index from storage
|
| 73 |
+
index = load_index_from_storage(storage_context, service_context=create_service_context())
|
| 74 |
+
|
| 75 |
+
#queries the index with the input text
|
| 76 |
+
response = index.as_query_engine().query(input_text)
|
| 77 |
+
|
| 78 |
+
return response.response
|
| 79 |
+
|
| 80 |
+
iface = gr.Interface(fn=data_querying,
|
| 81 |
+
inputs=gr.components.Textbox(lines=30, label="Enter your question"),
|
| 82 |
+
outputs=gr.components.Textbox(lines=40, label="Response", style="height: 400px; overflow-y: scroll;"),
|
| 83 |
+
title="Therapy Validation GPT 0.1 pre alpha")
|
| 84 |
+
|
| 85 |
+
#passes in data directory
|
| 86 |
+
index = data_ingestion_indexing("book-validation")
|
| 87 |
+
iface.launch(inline=True)
|