Spaces:
Running
Running
File size: 16,402 Bytes
7eee454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
#!/usr/bin/env python3
"""
Export all SAM 2.1 model sizes to ONNX format.
Supports: tiny, small, base-plus, and large models.
"""
import os
import sys
import subprocess
import shutil
import torch
import torch.nn as nn
import onnx
import onnxruntime as ort
from huggingface_hub import snapshot_download
# Ensure repository root (which contains the local 'sam2' package) is on sys.path
_REPO_ROOT = os.path.dirname(__file__)
if _REPO_ROOT not in sys.path:
sys.path.insert(0, _REPO_ROOT)
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Model configurations
MODEL_CONFIGS = {
'tiny': {
'hf_id': 'facebook/sam2.1-hiera-tiny',
'config_file': 'configs/sam2.1/sam2.1_hiera_t.yaml',
'checkpoint_name': 'sam2.1_hiera_tiny.pt',
'bb_feat_sizes': [(256, 256), (128, 128), (64, 64)]
},
'small': {
'hf_id': 'facebook/sam2.1-hiera-small',
'config_file': 'configs/sam2.1/sam2.1_hiera_s.yaml',
'checkpoint_name': 'sam2.1_hiera_small.pt',
'bb_feat_sizes': [(256, 256), (128, 128), (64, 64)]
},
'base_plus': {
'hf_id': 'facebook/sam2.1-hiera-base-plus',
'config_file': 'configs/sam2.1/sam2.1_hiera_b+.yaml',
'checkpoint_name': 'sam2.1_hiera_base_plus.pt',
'bb_feat_sizes': [(256, 256), (128, 128), (64, 64)]
},
'large': {
'hf_id': 'facebook/sam2.1-hiera-large',
'config_file': 'configs/sam2.1/sam2.1_hiera_l.yaml',
'checkpoint_name': 'sam2.1_hiera_large.pt',
'bb_feat_sizes': [(256, 256), (128, 128), (64, 64)]
}
}
def model_local_dir_from_size(model_size: str) -> str:
"""Return the local download directory for a given model size."""
return f"./sam2.1-hiera-{model_size.replace('_', '-')}-downloaded"
def cleanup_downloaded_files_for_model(model_size: str) -> None:
"""Delete the downloaded files for a model size after successful export/tests.
Safety checks ensure we only remove the expected snapshot directory.
"""
local_dir = model_local_dir_from_size(model_size)
try:
# Safety: ensure directory exists and name matches expected pattern
base = os.path.basename(os.path.normpath(local_dir))
if os.path.isdir(local_dir) and base.startswith("sam2.1-hiera-") and base.endswith("-downloaded"):
shutil.rmtree(local_dir)
print(f"π§Ή Cleaned up downloaded files at: {local_dir}")
else:
print(f"β Skipping cleanup; unexpected directory path: {local_dir}")
except Exception as e:
print(f"β Failed to clean up {local_dir}: {e}")
class SAM2CompleteModel(nn.Module):
"""Complete SAM2 model wrapper for ONNX export."""
def __init__(self, sam2_model, bb_feat_sizes):
super().__init__()
self.sam2_model = sam2_model
self.image_encoder = sam2_model.image_encoder
self.prompt_encoder = sam2_model.sam_prompt_encoder
self.mask_decoder = sam2_model.sam_mask_decoder
self.no_mem_embed = sam2_model.no_mem_embed
self.directly_add_no_mem_embed = sam2_model.directly_add_no_mem_embed
self.bb_feat_sizes = bb_feat_sizes
# Precompute image_pe as a buffer for constant folding optimization
with torch.no_grad():
self.register_buffer(
"image_pe_const",
self.prompt_encoder.get_dense_pe()
)
def forward(self, image, point_coords, point_labels):
"""
Complete SAM2 forward pass.
Args:
image: [1, 3, 1024, 1024] - Input image
point_coords: [1, N, 2] - Point coordinates in pixels
point_labels: [1, N] - Point labels (1=positive, 0=negative)
Returns:
masks: [1, 3, 1024, 1024] - Predicted masks
iou_predictions: [1, 3] - IoU predictions
"""
# 1. Image encoding
backbone_out = self.sam2_model.forward_image(image)
_, vision_feats, _, _ = self.sam2_model._prepare_backbone_features(backbone_out)
# Add no_mem_embed if needed
if self.directly_add_no_mem_embed:
vision_feats[-1] = vision_feats[-1] + self.no_mem_embed
# Process features
feats = []
for feat, feat_size in zip(vision_feats[::-1], self.bb_feat_sizes[::-1]):
feat_reshaped = feat.permute(1, 2, 0).reshape(1, -1, feat_size[0], feat_size[1])
feats.append(feat_reshaped)
feats = feats[::-1]
image_embeddings = feats[-1]
high_res_features = feats[:-1]
# 2. Prompt encoding
points = (point_coords, point_labels)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points, boxes=None, masks=None
)
# 3. Mask decoding
low_res_masks, iou_predictions, _, _ = self.mask_decoder(
image_embeddings=image_embeddings,
image_pe=self.image_pe_const,
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=True,
repeat_image=False,
high_res_features=high_res_features,
)
# 4. Upscale masks
masks = torch.nn.functional.interpolate(
low_res_masks, size=(1024, 1024), mode='bilinear', align_corners=False
)
return masks, iou_predictions
def download_model(model_size):
"""Download model from Hugging Face Hub."""
config = MODEL_CONFIGS[model_size]
local_dir = f"./sam2.1-hiera-{model_size.replace('_', '-')}-downloaded"
print(f"Downloading {model_size} model from {config['hf_id']}...")
if os.path.exists(local_dir):
print(f"β Model directory already exists: {local_dir}")
return local_dir
try:
snapshot_download(
repo_id=config['hf_id'],
local_dir=local_dir,
local_dir_use_symlinks=False,
resume_download=True
)
print(f"β Model downloaded to: {local_dir}")
return local_dir
except Exception as e:
print(f"β Failed to download {model_size} model: {e}")
return None
def load_sam2_model(model_size):
"""Load SAM2 model of specified size."""
config = MODEL_CONFIGS[model_size]
local_dir = download_model(model_size)
if not local_dir:
raise RuntimeError(f"Failed to download {model_size} model")
config_file = config['config_file']
ckpt_path = os.path.join(local_dir, config['checkpoint_name'])
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Checkpoint not found: {ckpt_path}")
print(f"Loading {model_size} model...")
sam2_model = build_sam2(
config_file=config_file,
ckpt_path=ckpt_path,
device="cpu",
mode="eval"
)
print(f"β {model_size} model loaded successfully")
return sam2_model, config['bb_feat_sizes']
def create_test_inputs():
"""Create test inputs for the model."""
image = torch.randn(1, 3, 1024, 1024)
point_coords = torch.tensor([[[512.0, 512.0]]], dtype=torch.float32)
point_labels = torch.tensor([[1]], dtype=torch.float32)
return image, point_coords, point_labels
def test_model_wrapper(sam2_model, bb_feat_sizes, model_size):
"""Test the model wrapper before ONNX export."""
print(f"\nTesting {model_size} model wrapper...")
wrapper = SAM2CompleteModel(sam2_model, bb_feat_sizes)
wrapper.eval()
image, point_coords, point_labels = create_test_inputs()
with torch.no_grad():
masks, iou_predictions = wrapper(image, point_coords, point_labels)
print(f"β {model_size} model wrapper test successful")
print(f" - Masks shape: {masks.shape}")
print(f" - IoU predictions shape: {iou_predictions.shape}")
return wrapper
def slim_onnx_model_with_onnxslim(input_path: str, image_shape=(1,3,1024,1024), num_points=1) -> bool:
"""Slim an ONNX model in-place using onnxslim via uvx.
Returns True if slimming succeeded and replaced the original file.
"""
try:
# Build command; include onnxruntime so model_check can run
slim_path = input_path + ".slim.onnx"
model_check_inputs = [
f"image:{','.join(map(str, image_shape))}",
f"point_coords:1,{num_points},2",
f"point_labels:1,{num_points}",
]
cmd = [
"uvx", "--with", "onnxruntime", "onnxslim",
input_path, slim_path,
"--model-check",
"--model-check-inputs",
*model_check_inputs,
]
print(f"Running ONNXSlim: {' '.join(cmd)}")
res = subprocess.run(cmd, capture_output=True, text=True)
if res.returncode != 0:
print("ONNXSlim failed; keeping original model.")
if res.stderr:
print(res.stderr[:1000])
return False
if not os.path.exists(slim_path):
print("ONNXSlim did not produce output; keeping original model.")
return False
# Verify and replace original
try:
onnx_model = onnx.load(slim_path)
onnx.checker.check_model(onnx_model)
except Exception as e:
print(f"Slimmed model failed ONNX checker: {e}; keeping original.")
try:
os.remove(slim_path)
except Exception:
pass
return False
# Replace original file atomically
orig_size = os.path.getsize(input_path)
slim_size = os.path.getsize(slim_path)
os.replace(slim_path, input_path)
print(f"β Replaced original ONNX with slimmed model. Size: {orig_size/(1024**2):.2f} MB -> {slim_size/(1024**2):.2f} MB")
return True
except FileNotFoundError as e:
print(f"ONNXSlim or uvx not found: {e}. Skipping slimming.")
except Exception as e:
print(f"Unexpected error during ONNXSlim: {e}. Skipping slimming.")
return False
def export_model_to_onnx(sam2_model, bb_feat_sizes, model_size):
"""Export SAM2 model to ONNX format."""
output_path = f"sam2_{model_size}.onnx"
print(f"\nExporting {model_size} model to ONNX...")
wrapper = SAM2CompleteModel(sam2_model, bb_feat_sizes)
wrapper.eval()
image, point_coords, point_labels = create_test_inputs()
try:
torch.onnx.export(
wrapper,
(image, point_coords, point_labels),
output_path,
export_params=True,
opset_version=17,
do_constant_folding=True,
input_names=['image', 'point_coords', 'point_labels'],
output_names=['masks', 'iou_predictions'],
dynamic_axes={
'image': {0: 'batch_size'},
'point_coords': {0: 'batch_size', 1: 'num_points'},
'point_labels': {0: 'batch_size', 1: 'num_points'},
'masks': {0: 'batch_size'},
'iou_predictions': {0: 'batch_size'}
},
training=torch.onnx.TrainingMode.EVAL,
keep_initializers_as_inputs=False,
verbose=False
)
print(f"β {model_size} model exported to: {output_path}")
# Verify the exported model
onnx_model = onnx.load(output_path)
onnx.checker.check_model(onnx_model)
print(f"β ONNX model verification passed")
# Get model info
file_size = os.path.getsize(output_path)
print(f"β ONNX model size: {file_size / (1024**2):.2f} MB")
# Try to slim the ONNX model in-place with onnxslim
slimmed = slim_onnx_model_with_onnxslim(output_path, image_shape=(1,3,1024,1024), num_points=1)
if slimmed:
# Recompute size after slimming
file_size = os.path.getsize(output_path)
print(f"β Slimmed ONNX model size: {file_size / (1024**2):.2f} MB")
else:
print("β Skipping slimming or slimming failed; using original ONNX model.")
return output_path, file_size
except Exception as e:
print(f"β Error exporting {model_size} to ONNX: {e}")
raise
def test_onnx_model(onnx_path, original_model, bb_feat_sizes, model_size):
"""Test the ONNX model and compare with original."""
print(f"\nTesting {model_size} ONNX model...")
try:
# Load ONNX model with CPU-optimized session options
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.enable_mem_pattern = True
sess_options.enable_cpu_mem_arena = True
try:
import os as _os
sess_options.intra_op_num_threads = max(1, (_os.cpu_count() or 1) // 2)
except Exception:
pass
sess_options.inter_op_num_threads = 1
providers = [("CPUExecutionProvider", {"use_arena": True})]
ort_session = ort.InferenceSession(onnx_path, sess_options, providers=providers)
image, point_coords, point_labels = create_test_inputs()
# Run ONNX inference
ort_inputs = {
'image': image.numpy(),
'point_coords': point_coords.numpy(),
'point_labels': point_labels.numpy()
}
onnx_outputs = ort_session.run(None, ort_inputs)
onnx_masks, onnx_iou = onnx_outputs
# Compare with original model
wrapper = SAM2CompleteModel(original_model, bb_feat_sizes)
wrapper.eval()
with torch.no_grad():
torch_masks, torch_iou = wrapper(image, point_coords, point_labels)
torch_masks = torch_masks.numpy()
torch_iou = torch_iou.numpy()
# Calculate differences
mask_max_diff = abs(onnx_masks - torch_masks).max()
iou_max_diff = abs(onnx_iou - torch_iou).max()
print(f"β {model_size} ONNX inference successful")
print(f" - Masks max difference: {mask_max_diff:.6f}")
print(f" - IoU max difference: {iou_max_diff:.6f}")
tolerance = 1e-3
success = mask_max_diff < tolerance and iou_max_diff < tolerance
if success:
print(f"β Numerical accuracy within tolerance ({tolerance})")
else:
print(f"β Some differences exceed tolerance ({tolerance})")
return success
except Exception as e:
print(f"β Error testing {model_size} ONNX model: {e}")
return False
def export_all_models():
"""Export all SAM2.1 model sizes to ONNX."""
print("=== SAM 2.1 All Models ONNX Export ===\n")
results = {}
for model_size in MODEL_CONFIGS.keys():
try:
print(f"\n{'='*50}")
print(f"Processing {model_size.upper()} model")
print(f"{'='*50}")
# Load model
sam2_model, bb_feat_sizes = load_sam2_model(model_size)
# Test wrapper
wrapper = test_model_wrapper(sam2_model, bb_feat_sizes, model_size)
# Export to ONNX
onnx_path, file_size = export_model_to_onnx(sam2_model, bb_feat_sizes, model_size)
# Test ONNX model
success = test_onnx_model(onnx_path, sam2_model, bb_feat_sizes, model_size)
# Cleanup downloaded files only if export + test succeeded
if success:
cleanup_downloaded_files_for_model(model_size)
else:
print(f"β Skipping cleanup for {model_size}; export/test not fully successful.")
results[model_size] = {
'onnx_path': onnx_path,
'file_size_mb': file_size / (1024**2),
'success': success
}
print(f"β {model_size} model export completed!")
except Exception as e:
print(f"β Failed to export {model_size} model: {e}")
results[model_size] = {
'error': str(e),
'success': False
}
# Print summary
print(f"\n{'='*60}")
print("EXPORT SUMMARY")
print(f"{'='*60}")
for model_size, result in results.items():
if result['success']:
print(f"β {model_size:12} - {result['onnx_path']:20} ({result['file_size_mb']:.1f} MB)")
else:
print(f"β {model_size:12} - FAILED")
return results
if __name__ == "__main__":
export_all_models()
|