File size: 19,307 Bytes
7eee454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b31bd
 
7eee454
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use std::{collections::HashMap, sync::Arc, time::Instant};

use anyhow::Result;
use axum::{
    extract::{DefaultBodyLimit, State},
    http::StatusCode,
    response::IntoResponse,
    routing::{get, post},
    Json, Router,
};
use axum_prometheus::PrometheusMetricLayer;
use base64::Engine as _;
use base64::engine::general_purpose::STANDARD as B64;
use image::{imageops::FilterType, DynamicImage, ImageBuffer, Rgba};
use ndarray::{s, Array, Array4, Ix4};
use ort::{session::{builder::GraphOptimizationLevel, Session}, value::Tensor};
use tokio::sync::RwLock;
use crate::shared::{ModelsResponse, Point, Sam2ModelSize, SegmentRequest, SegmentResponse};
use tower_http::{cors::{Any, CorsLayer}, services::ServeDir, trace::TraceLayer};
use tracing::{error, info, Level};
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
use uuid::Uuid;

#[derive(Clone)]
struct AppState {
    models: Arc<RwLock<HashMap<Sam2ModelSize, Arc<RwLock<Session>>>>>,
}

#[derive(thiserror::Error, Debug)]
enum AppError {
    #[error("Bad request: {0}")]
    BadRequest(String),
    #[error("Internal error: {0}")]
    Internal(String),
}

impl IntoResponse for AppError {
    fn into_response(self) -> axum::response::Response {
        let (code, msg) = match self {
            AppError::BadRequest(m) => (StatusCode::BAD_REQUEST, m),
            AppError::Internal(m) => (StatusCode::INTERNAL_SERVER_ERROR, m),
        };
        (code, msg).into_response()
    }
}

#[utoipa::path(
    get,
    path = "/api/models",
    tag = "Models",
    summary = "List available model sizes",
    description = "Returns the list of supported SAM2 model variants you can use for segmentation.",
    responses(
        (status = 200, description = "Available model sizes", body = ModelsResponse)
    )
)]
async fn get_models() -> Json<ModelsResponse> {
    Json(ModelsResponse { models: vec![
        Sam2ModelSize::Tiny,
        Sam2ModelSize::Small,
        Sam2ModelSize::BasePlus,
        Sam2ModelSize::Large,
    ]})
}

#[derive(OpenApi)]
#[openapi(
    paths(get_models, segment),
    components(schemas(SegmentRequest, SegmentResponse, ModelsResponse, Sam2ModelSize, Point))
)]
struct ApiDoc;

#[utoipa::path(
    post,
    path = "/api/segment",
    tag = "Segmentation",
    summary = "Run SAM2 segmentation for an image with click prompts",
    description = r#"Request body fields:
- image_b64: Base64 PNG/JPEG of the input image (original resolution).
- model: Model size to use (Tiny | Small | BasePlus | Large).
- points: Array of click prompts in 1024x1024 model space. label=1 (positive), 0 (negative).
- request_id: Optional client correlation ID (UUID). Server generates one if omitted.
- threshold: Optional probability threshold (0..1). Default 0.5.
"#,
    request_body = SegmentRequest,
    responses(
        (status = 200, description = "Segmentation result including IoU, overlay mask PNG, and original-resolution cutout", body = SegmentResponse)
    )
)]
async fn segment(State(state): State<AppState>, Json(req): Json<SegmentRequest>) -> Result<Json<SegmentResponse>, AppError> {
    info!("segment: model={:?}, points={}", req.model, req.points.len());
    // 1) Decode image
    let img_bytes = B64.decode(req.image_b64.as_bytes()).map_err(|e| AppError::BadRequest(format!("invalid base64: {e}")))?;
    info!("segment: image bytes decoded: {} bytes", img_bytes.len());
    let dyn_img = image::load_from_memory(&img_bytes).map_err(|e| AppError::BadRequest(format!("invalid image: {e}")))?;

    // 2) Preprocess to 1024x1024 CHW f32
    let pre = preprocess_image(&dyn_img).map_err(|e| AppError::BadRequest(format!("preprocess error: {e}")))?;
    info!("segment: preprocessed image to [1,3,1024,1024]");

    // 3) Build points arrays
    if req.points.is_empty() { return Err(AppError::BadRequest("at least one point required".into())); }
    let n = req.points.len();
    let mut coords = Vec::with_capacity(n * 2);
    let mut labels = Vec::with_capacity(n);
    for p in &req.points {
        coords.push(p.x);
        coords.push(p.y);
        labels.push(p.label as f32);
    }
    let point_coords = ndarray::Array::from_shape_vec((1, n, 2), coords).map_err(|e| AppError::BadRequest(format!("bad point shape: {e}")))?.into_dyn();
    let point_labels = ndarray::Array::from_shape_vec((1, n), labels).map_err(|e| AppError::BadRequest(format!("bad label shape: {e}")))?.into_dyn();

    // 4) Get or load session
    let model_sel = req.model.clone();
    let session = get_or_load_session(&state, model_sel.clone()).await.map_err(|e| AppError::Internal(e.to_string()))?;

    // 5) Run inference
    let t0 = Instant::now();
    // Build inputs outside of the guard to avoid borrowing issues
    let t_image = Tensor::from_array(pre).map_err(|e| AppError::Internal(e.to_string()))?;
    let t_coords = Tensor::from_array(point_coords).map_err(|e| AppError::Internal(e.to_string()))?;
    let t_labels = Tensor::from_array(point_labels).map_err(|e| AppError::Internal(e.to_string()))?;

    // Run inference and compute outputs within the lock scope so borrows don't escape
    let (mask_png_b64, masked_region_png_b64, iou_arr, best_idx) = {
        let prob_thresh = req.threshold.unwrap_or(0.5);
        let mut guard = session.write().await;
        let outs = guard.run(ort::inputs![
            "image" => t_image,
            "point_coords" => t_coords,
            "point_labels" => t_labels,
        ]).map_err(|e| AppError::Internal(e.to_string()))?;

        let iou = outs["iou_predictions"].try_extract_array::<f32>().map_err(|e| AppError::Internal(e.to_string()))?; // [1,3]
        let flat = iou.iter().cloned().collect::<Vec<f32>>();
        let (mut best_idx, mut best_val) = (0usize, f32::MIN);
        for (i, v) in flat.iter().enumerate() { if *v > best_val { best_val = *v; best_idx = i % 3; } }

        // Prepare mask at 1024x1024
        let masks = outs["masks"].try_extract_array::<f32>().map_err(|e| AppError::Internal(e.to_string()))?; // [1,3,1024,1024]
        let masks4 = masks.into_dimensionality::<Ix4>().map_err(|e| AppError::Internal(e.to_string()))?; // [1,3,H,W]
        let chosen = masks4.slice(s![0, best_idx, .., ..]);
        let (h, w) = (chosen.shape()[0], chosen.shape()[1]);
        // Build probability map with a light Gaussian smoothing to reduce ragged edges
        let mut prob = vec![0f32; w*h];
        for y in 0..h { for x in 0..w {
            let logit = chosen[(y, x)];
            prob[y*w + x] = 1.0 / (1.0 + (-logit).exp());
        } }
        // Separable Gaussian blur: radius=3, sigma=1.6 (even smoother edges)
        let radius = 3usize;
        let sigma = 1.6f32;
        let ksize = 2*radius + 1;
        let mut kernel = vec![0f32; ksize];
        let s2 = 2.0*sigma*sigma;
        let mut ksum = 0f32;
        for i in 0..ksize { let x = i as i32 - radius as i32; let v = (-(x as f32 * x as f32)/s2).exp(); kernel[i]=v; ksum += v; }
        for i in 0..ksize { kernel[i] /= ksum; }
        let mut tmp = vec![0f32; w*h];
        // Horizontal
        for y in 0..h { for x in 0..w {
            let mut acc = 0f32;
            for i in 0..ksize {
                let dx = i as i32 - radius as i32;
                let xx = (x as i32 + dx).clamp(0, (w-1) as i32) as usize;
                acc += prob[y*w + xx] * kernel[i];
            }
            tmp[y*w + x] = acc;
        } }
        // Vertical
        for y in 0..h { for x in 0..w {
            let mut acc = 0f32;
            for i in 0..ksize {
                let dy = i as i32 - radius as i32;
                let yy = (y as i32 + dy).clamp(0, (h-1) as i32) as usize;
                acc += tmp[yy*w + x] * kernel[i];
            }
            prob[y*w + x] = acc;
        } }
        // Threshold to binary
        let mut mask_bin = vec![0u8; w*h];
        for i in 0..(w*h) { mask_bin[i] = if prob[i] > prob_thresh { 1 } else { 0 }; }
        // Morphological cleanup: closing then opening (3x3, 1 iter each)
        let mut work = vec![0u8; w*h];
        let mut dilate = |src: &Vec<u8>, dst: &mut Vec<u8>| {
            for y in 0..h { for x in 0..w {
                let mut v = 0u8;
                'outer: for dy in -1i32..=1 { let yy = y as i32 + dy; if yy<0 || yy>=h as i32 { continue; }
                    for dx in -1i32..=1 { let xx = x as i32 + dx; if xx<0 || xx>=w as i32 { continue; }
                        if src[yy as usize*w + xx as usize] != 0 { v = 1; break 'outer; }
                    }
                }
                dst[y*w + x] = v;
            } }
        };
        let mut erode = |src: &Vec<u8>, dst: &mut Vec<u8>| {
            for y in 0..h { for x in 0..w {
                let mut v = 1u8;
                'outer: for dy in -1i32..=1 { let yy = y as i32 + dy; if yy<0 || yy>=h as i32 { v=0; break; }
                    for dx in -1i32..=1 { let xx = x as i32 + dx; if xx<0 || xx>=w as i32 { v=0; break 'outer; }
                        if src[yy as usize*w + xx as usize] == 0 { v = 0; break 'outer; }
                    }
                }
                dst[y*w + x] = v;
            } }
        };
        // Closing
        dilate(&mask_bin, &mut work);
        erode(&work, &mut mask_bin);
        // Opening
        erode(&mask_bin, &mut work);
        dilate(&work, &mut mask_bin);

        // 1) Make a 1024x1024 PNG for overlay using distance-based anti-aliased outline + smooth fill
        // Compute boundary pixels (8-neighborhood)
        let mut is_boundary = vec![0u8; w*h];
        for y in 0..h { for x in 0..w {
            let idx = y*w + x; if mask_bin[idx]==0 { continue; }
            let mut boundary=false;
            for dy in -1i32..=1 { for dx in -1i32..=1 {
                if dx==0 && dy==0 { continue; }
                let ny = y as i32 + dy; let nx = x as i32 + dx;
                if ny<0 || nx<0 || ny>=h as i32 || nx>=w as i32 { boundary=true; break; }
                let nidx = (ny as usize)*w + (nx as usize);
                if mask_bin[nidx]==0 { boundary=true; break; }
            } if boundary { break; } }
            if boundary { is_boundary[idx]=1; }
        } }
        // Approximate Euclidean distance transform from boundary using 2-pass chamfer (1, sqrt2)
        let mut dist = vec![1e9f32; w*h];
        for i in 0..(w*h) { if is_boundary[i]!=0 { dist[i]=0.0; } }
        let s2 = 1.41421356f32; // sqrt(2)
        // Forward pass
        for y in 0..h { for x in 0..w {
            let idx = y*w + x; let mut d = dist[idx];
            if x>0 { d = d.min(dist[y*w + (x-1)] + 1.0); }
            if y>0 { d = d.min(dist[(y-1)*w + x] + 1.0); }
            if x>0 && y>0 { d = d.min(dist[(y-1)*w + (x-1)] + s2); }
            if x+1<w && y>0 { d = d.min(dist[(y-1)*w + (x+1)] + s2); }
            dist[idx]=d;
        } }
        // Backward pass
        for y in (0..h).rev() { for x in (0..w).rev() {
            let idx = y*w + x; let mut d = dist[idx];
            if x+1<w { d = d.min(dist[y*w + (x+1)] + 1.0); }
            if y+1<h { d = d.min(dist[(y+1)*w + x] + 1.0); }
            if x+1<w && y+1<h { d = d.min(dist[(y+1)*w + (x+1)] + s2); }
            if x>0 && y+1<h { d = d.min(dist[(y+1)*w + (x-1)] + s2); }
            dist[idx]=d;
        } }
        // Compose overlay per pixel from prob (smooth fill) and distance (anti-aliased line)
        let mut buf = ImageBuffer::<Rgba<u8>, Vec<u8>>::new(w as u32, h as u32);
        let fill_rgb = (0u8, 140u8, 255u8);
        let line_rgb = (0u8, 64u8, 192u8);
        let base_fill_a = 160f32/255.0; // ~0.63
        let band = 0.25f32; // softness band around threshold
        let sigma_line = 1.2f32; // controls edge thickness and smoothness
        for y in 0..h { for x in 0..w {
            let i = y*w + x;
            let p = prob[i];
            // Fill alpha via smoothstep centered at prob_thresh
            let t = ((p - (prob_thresh - band)) / (2.0*band)).clamp(0.0, 1.0);
            let s = t*t*(3.0 - 2.0*t);
            let a_fill = base_fill_a * s;
            // Line alpha via Gaussian of distance to boundary
            let d = dist[i];
            let a_line = (-0.5 * (d/sigma_line)*(d/sigma_line)).exp().clamp(0.0, 1.0);
            // Premultiplied composite of fill and line
            let af = a_fill; let al = a_line; let a_out = af + al * (1.0 - af);
            if a_out <= 0.0 {
                buf.put_pixel(x as u32, y as u32, Rgba([0,0,0,0]));
            } else {
                let cf_r = fill_rgb.0 as f32 / 255.0 * af;
                let cf_g = fill_rgb.1 as f32 / 255.0 * af;
                let cf_b = fill_rgb.2 as f32 / 255.0 * af;
                let cl_r = line_rgb.0 as f32 / 255.0 * al;
                let cl_g = line_rgb.1 as f32 / 255.0 * al;
                let cl_b = line_rgb.2 as f32 / 255.0 * al;
                let c_r = cf_r + cl_r * (1.0 - af);
                let c_g = cf_g + cl_g * (1.0 - af);
                let c_b = cf_b + cl_b * (1.0 - af);
                let r = ((c_r / a_out)*255.0).round().clamp(0.0, 255.0) as u8;
                let g = ((c_g / a_out)*255.0).round().clamp(0.0, 255.0) as u8;
                let b = ((c_b / a_out)*255.0).round().clamp(0.0, 255.0) as u8;
                let a = (a_out*255.0).round().clamp(0.0, 255.0) as u8;
                buf.put_pixel(x as u32, y as u32, Rgba([r,g,b,a]));
            }
        } }
        let mut out_bytes: Vec<u8> = Vec::new();
        { let img_dyn = DynamicImage::ImageRgba8(buf); let mut cursor = std::io::Cursor::new(&mut out_bytes); img_dyn.write_to(&mut cursor, image::ImageFormat::Png).map_err(|e| AppError::Internal(e.to_string()))?; }
        let mask_png_b64 = B64.encode(out_bytes);

        // 2) Upsample mask back to original image dimensions and cut RGBA
        let orig = dyn_img.to_rgba8();
        let (ow, oh) = (orig.width() as usize, orig.height() as usize);
        let mut out_rgba = ImageBuffer::<Rgba<u8>, Vec<u8>>::new(ow as u32, oh as u32);
        for y in 0..oh {
            let v = (y as f32 + 0.5) / (oh as f32) * (h as f32) - 0.5;
            let y1 = v.floor().clamp(0.0, (h-1) as f32) as usize;
            let y2 = ((y1 + 1).min(h-1)) as usize;
            let fy = v - y1 as f32;
            for x in 0..ow {
                let u = (x as f32 + 0.5) / (ow as f32) * (w as f32) - 0.5;
                let x1 = u.floor().clamp(0.0, (w-1) as f32) as usize;
                let x2 = ((x1 + 1).min(w-1)) as usize;
                let fx = u - x1 as f32;
                let a11 = mask_bin[y1*w + x1] as f32;
                let a21 = mask_bin[y1*w + x2] as f32;
                let a12 = mask_bin[y2*w + x1] as f32;
                let a22 = mask_bin[y2*w + x2] as f32;
                let atop = a11*(1.0-fx) + a21*fx;
                let abot = a12*(1.0-fx) + a22*fx;
                let a = atop*(1.0-fy) + abot*fy; // 0..1
                let px = orig.get_pixel(x as u32, y as u32);
                let alpha = (a*255.0).round().clamp(0.0, 255.0) as u8;
                out_rgba.put_pixel(x as u32, y as u32, Rgba([px[0], px[1], px[2], alpha]));
            }
        }
        let mut cut_bytes: Vec<u8> = Vec::new();
        { let img_dyn = DynamicImage::ImageRgba8(out_rgba); let mut cursor = std::io::Cursor::new(&mut cut_bytes); img_dyn.write_to(&mut cursor, image::ImageFormat::Png).map_err(|e| AppError::Internal(e.to_string()))?; }
        let masked_region_png_b64 = Some(B64.encode(cut_bytes));

        let i0 = flat.get(0).copied().unwrap_or(0.0);
        let i1 = flat.get(1).copied().unwrap_or(0.0);
        let i2 = flat.get(2).copied().unwrap_or(0.0);
        (mask_png_b64, masked_region_png_b64, [i0, i1, i2], best_idx)
    };
    let dur_ms = t0.elapsed().as_millis();

    let resp = SegmentResponse {
        request_id: req.request_id.unwrap_or_else(Uuid::new_v4),
        model: model_sel,
        iou: iou_arr,
        best_idx,
        inference_ms: dur_ms,
        mask_png_b64,
        masked_region_png_b64,
    };

    Ok(Json(resp))
}

async fn get_or_load_session(state: &AppState, size: Sam2ModelSize) -> Result<Arc<RwLock<Session>>> {
    // Cache key is model size
    let mut map = state.models.write().await;
    if let Some(s) = map.get(&size) { return Ok(Arc::clone(s)); }

    let filename = size.to_filename();
    let path = std::path::Path::new(env!("CARGO_MANIFEST_DIR")).join("..").join(filename);
    let path_str = path.to_string_lossy().to_string();

    // Tune ONNX Runtime session options for CPU inference
    let cpus = std::thread::available_parallelism().map(|n| n.get()).unwrap_or(4);
    let intra: usize = std::cmp::max(1, cpus / 2);
    let inter: usize = 1;

    // Build session with CPU-friendly options
    let builder = Session::builder()?
        .with_optimization_level(GraphOptimizationLevel::Level3)?
        .with_intra_threads(intra)?
        .with_inter_threads(inter)?
        .with_memory_pattern(true)?
        .with_config_entry("session.set_denormal_as_zero", "1")?;

    let session = builder.commit_from_file(path_str)?;

    let arc = Arc::new(RwLock::new(session));
    map.insert(size, Arc::clone(&arc));
    Ok(arc)
}

fn preprocess_image(img: &DynamicImage) -> anyhow::Result<Array4<f32>> {
    // Resize to 1024x1024, convert to RGB, CHW, and normalize with ImageNet stats
    let img = img.to_rgb8();
    let resized = image::imageops::resize(&img, 1024, 1024, FilterType::Lanczos3);
    let (w, h) = (resized.width() as usize, resized.height() as usize);
    let mut arr: Array4<f32> = Array::zeros((1, 3, h, w));

    // ImageNet mean/std as used by most SAM/SAM2 pipelines
    let mean = [0.485f32, 0.456, 0.406];
    let std = [0.229f32, 0.224, 0.225];

    for y in 0..h { for x in 0..w {
        let p = resized.get_pixel(x as u32, y as u32);
        let r = p[0] as f32 / 255.0;
        let g = p[1] as f32 / 255.0;
        let b = p[2] as f32 / 255.0;
        arr[[0, 0, y, x]] = (r - mean[0]) / std[0];
        arr[[0, 1, y, x]] = (g - mean[1]) / std[1];
        arr[[0, 2, y, x]] = (b - mean[2]) / std[2];
    }}
    Ok(arr)
}

mod shared;

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt()
        .with_max_level(Level::INFO)
        .with_env_filter(tracing_subscriber::EnvFilter::from_default_env())
        .init();

    let (prometheus_layer, metric_handle) = PrometheusMetricLayer::pair();

    let state = AppState { models: Arc::new(RwLock::new(HashMap::new())) };

    let cors = CorsLayer::new()
        .allow_origin(Any)
        .allow_methods(Any)
        .allow_headers(Any);

    let api_router = Router::new()
        .route("/models", get(get_models))
        .route("/segment", post(segment));

    let app = Router::new()
        .merge(SwaggerUi::new("/docs").url("/api-docs/openapi.json", ApiDoc::openapi()))
        .nest("/api", api_router)
        .fallback_service(ServeDir::new("sam2_server/static"))
        .layer(DefaultBodyLimit::max(50 * 1024 * 1024))
        .layer(cors)
        .layer(TraceLayer::new_for_http())
        .layer(prometheus_layer)
        .with_state(state);

    let port: u16 = std::env::var("PORT").ok().and_then(|s| s.parse().ok()).unwrap_or(8080);
    let addr = std::net::SocketAddr::from(([0, 0, 0, 0], port));
    info!("server listening on http://{}", addr);
    axum::serve(tokio::net::TcpListener::bind(addr).await?, app).await?;
    Ok(())
}