Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -36,11 +36,11 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 36 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
| 37 |
selected_df = df.iloc[random_i]
|
| 38 |
text = selected_df['clean_text']
|
| 39 |
-
print(type(selected_df['actual_aspects']))
|
| 40 |
-
print(type(selected_df['actual_sentiments']))
|
| 41 |
-
print(selected_df['actual_aspects'])
|
| 42 |
true_aspect = selected_df['actual_aspects']
|
| 43 |
true_sentiment = selected_df['actual_sentiments']
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
|
| 46 |
Positive example 1-
|
|
@@ -74,11 +74,6 @@ def perform_asde_inference(text, dataset, model_id):
|
|
| 74 |
|
| 75 |
pred_doubles = pd.DataFrame(list(map(list, zip(pred_asp, pred_sent))),columns=['Aspect','Sentiment'])
|
| 76 |
|
| 77 |
-
if not text:
|
| 78 |
-
true_doubles = pd.DataFrame(list(map(list, zip(ast.literal_eval(true_aspect), ast.literal_eval(true_sentiment)))),columns=['Aspect','Sentiment'])
|
| 79 |
-
else:
|
| 80 |
-
true_doubles = pd.DataFrame([["",""]],columns=['Aspect','Sentiment'])
|
| 81 |
-
|
| 82 |
return pred_doubles, true_doubles, text, model_generated
|
| 83 |
|
| 84 |
def run_demo(text, dataset, model_id):
|
|
|
|
| 36 |
random_i = np.random.randint(low=0, high=df.shape[0], size=(1,)).flat[0]
|
| 37 |
selected_df = df.iloc[random_i]
|
| 38 |
text = selected_df['clean_text']
|
|
|
|
|
|
|
|
|
|
| 39 |
true_aspect = selected_df['actual_aspects']
|
| 40 |
true_sentiment = selected_df['actual_sentiments']
|
| 41 |
+
true_doubles = pd.DataFrame(list(map(list, zip(ast.literal_eval(true_aspect), ast.literal_eval(true_sentiment)))),columns=['Aspect','Sentiment'])
|
| 42 |
+
else:
|
| 43 |
+
true_doubles = pd.DataFrame([["",""]],columns=['Aspect','Sentiment'])
|
| 44 |
|
| 45 |
bos_instruction = """Definition: The output will be the aspects (both implicit and explicit) and the aspects sentiment polarity. In cases where there are no aspects the output should be noaspectterm:none.
|
| 46 |
Positive example 1-
|
|
|
|
| 74 |
|
| 75 |
pred_doubles = pd.DataFrame(list(map(list, zip(pred_asp, pred_sent))),columns=['Aspect','Sentiment'])
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return pred_doubles, true_doubles, text, model_generated
|
| 78 |
|
| 79 |
def run_demo(text, dataset, model_id):
|