Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| # Initialize the InferenceClient with your chat model. | |
| client = InferenceClient("amusktweewt/tiny-model-500M-chat-v2") | |
| def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
| """ | |
| Builds a chat prompt using a simple template: | |
| - Optionally includes a system message. | |
| - Iterates over conversation history (each exchange as a tuple of (user, assistant)). | |
| - Adds the new user message and appends an empty assistant turn. | |
| Then it streams the response from the model. | |
| """ | |
| messages = [] | |
| # Include the system prompt if provided. | |
| if system_message: | |
| messages.append({"role": "system", "content": system_message}) | |
| # Append conversation history. | |
| if history: | |
| for user_msg, bot_msg in history: | |
| messages.append({"role": "user", "content": user_msg}) | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| # Add the new user message and an empty assistant response | |
| # (this mimics your template where the assistant turn is empty to be filled). | |
| messages.append({"role": "user", "content": message}) | |
| messages.append({"role": "assistant", "content": ""}) | |
| response_text = "" | |
| # Stream the response token-by-token. | |
| for resp in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = resp.choices[0].delta.content | |
| response_text += token | |
| yield response_text | |
| # Create a Gradio ChatInterface. | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |