Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| # -- 1) DEFINE YOUR MODELS HERE -- | |
| models = [ | |
| { | |
| "name": "Tiny Model 500M Chat v2", | |
| "description": "Original model with a context length of 1024 and single turn capabilities", | |
| "id": "amusktweewt/tiny-model-500M-chat-v2", | |
| "enabled": True | |
| }, | |
| { | |
| "name": "New Model", | |
| "description": "(Disabled)", | |
| "id": "another-model", | |
| "enabled": False | |
| } | |
| ] | |
| def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p): | |
| """ | |
| Builds a chat prompt using a simple template: | |
| - Optionally includes a system message. | |
| - Iterates over conversation history (each exchange as a tuple of (user, assistant)). | |
| - Adds the new user message and appends an empty assistant turn. | |
| Then it streams the response from the model. | |
| """ | |
| # -- 2) Instantiate the InferenceClient using the chosen model -- | |
| client = InferenceClient(model_id) | |
| # Build the messages list. | |
| messages = [] | |
| if system_message: | |
| messages.append({"role": "system", "content": system_message}) | |
| if history: | |
| for user_msg, bot_msg in history: | |
| messages.append({"role": "user", "content": user_msg}) | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| messages.append({"role": "assistant", "content": ""}) | |
| response_text = "" | |
| # Stream the response token-by-token. | |
| for resp in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = resp.choices[0].delta.content | |
| response_text += token | |
| yield response_text | |
| # Since Gradio doesn't support disabled options in dropdowns natively, | |
| # we'll use a workaround with HTML and JavaScript | |
| # -- 3) BUILD THE UI WITH CUSTOM DROPDOWN -- | |
| with gr.Blocks(css=""" | |
| .container { | |
| max-width: 900px !important; | |
| margin-left: auto; | |
| margin-right: auto; | |
| } | |
| #chatbot { | |
| height: 600px !important; | |
| } | |
| /* CSS for disabling dropdown options */ | |
| .disabled-option { | |
| color: #999 !important; | |
| background-color: #f0f0f0 !important; | |
| pointer-events: none !important; | |
| } | |
| /* Dark mode support */ | |
| @media (prefers-color-scheme: dark) { | |
| .disabled-option { | |
| color: #666 !important; | |
| background-color: #333 !important; | |
| } | |
| } | |
| """) as demo: | |
| with gr.Row(): | |
| with gr.Column(elem_classes="container"): | |
| # Create custom HTML dropdown with properly disabled options | |
| dropdown_options = "" | |
| for model in models: | |
| value = model["id"] | |
| label = f"{model['name']}: {model['description']}" | |
| disabled = "" if model["enabled"] else 'disabled class="disabled-option"' | |
| dropdown_options += f'<option value="{value}" {disabled}>{label}</option>' | |
| dropdown_html = f""" | |
| <div style="margin-bottom: 20px;"> | |
| <label for="model_select" style="display: block; margin-bottom: 8px; font-weight: bold;">Select Model:</label> | |
| <select id="model_select" style="width: 100%; padding: 8px; border-radius: 8px; | |
| border: 1px solid var(--border-color, #ccc); background-color: var(--background-fill-primary);" | |
| onchange="document.getElementById('hidden_model_id').value = this.value; | |
| document.getElementById('hidden_model_id').dispatchEvent(new Event('input'));"> | |
| {dropdown_options} | |
| </select> | |
| </div> | |
| """ | |
| gr.HTML(value=dropdown_html) | |
| # Hidden textbox to store the current model ID (will be read by 'respond') | |
| model_id = gr.Textbox( | |
| value=models[0]["id"], | |
| visible=False, | |
| elem_id="hidden_model_id" | |
| ) | |
| # System message and parameter controls in a collapsible section | |
| with gr.Accordion("Advanced Settings", open=False): | |
| system_message = gr.Textbox( | |
| value="You are a friendly Chatbot.", | |
| label="System message" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| max_tokens = gr.Slider( | |
| minimum=1, | |
| maximum=2048, | |
| value=512, | |
| step=1, | |
| label="Max new tokens" | |
| ) | |
| with gr.Column(scale=1): | |
| temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ) | |
| with gr.Column(scale=1): | |
| top_p = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)" | |
| ) | |
| # The ChatInterface with a larger chat area and our parameters | |
| chat = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| model_id, | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ], | |
| chatbot=gr.Chatbot(elem_id="chatbot", height=600) | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |