Spaces:
Runtime error
Runtime error
Commit
Β·
8be8621
1
Parent(s):
ccbe31d
add organizations filter
Browse files
app.py
CHANGED
|
@@ -98,6 +98,7 @@ merged_dfs = {k: format_data(v) for k, v in merged_dfs.items()}
|
|
| 98 |
# get constants
|
| 99 |
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
|
| 100 |
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
|
|
|
| 101 |
|
| 102 |
###################
|
| 103 |
### Build and Plot Data
|
|
@@ -109,11 +110,13 @@ def get_data_split(dfs, set_name):
|
|
| 109 |
return df.reset_index(drop=True)
|
| 110 |
|
| 111 |
|
| 112 |
-
def filter_df(min_score, max_models_per_month, set_selector):
|
| 113 |
df = get_data_split(merged_dfs, set_name=set_selector)
|
| 114 |
|
| 115 |
# filter data
|
| 116 |
-
filtered_df = df[
|
|
|
|
|
|
|
| 117 |
|
| 118 |
filtered_df = (
|
| 119 |
filtered_df.groupby(["Month-Year", "License"], group_keys=False)
|
|
@@ -216,36 +219,45 @@ with gr.Blocks(
|
|
| 216 |
</div>
|
| 217 |
"""
|
| 218 |
)
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
# Show plot
|
| 251 |
plot = gr.Plot()
|
|
@@ -253,31 +265,37 @@ with gr.Blocks(
|
|
| 253 |
|
| 254 |
demo.load(
|
| 255 |
fn=filter_df,
|
| 256 |
-
inputs=[min_score, max_models_per_month, set_selector],
|
| 257 |
outputs=filtered_df,
|
| 258 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 259 |
|
| 260 |
min_score.change(
|
| 261 |
fn=filter_df,
|
| 262 |
-
inputs=[min_score, max_models_per_month, set_selector],
|
| 263 |
outputs=filtered_df,
|
| 264 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 265 |
|
| 266 |
max_models_per_month.change(
|
| 267 |
fn=filter_df,
|
| 268 |
-
inputs=[min_score, max_models_per_month, set_selector],
|
| 269 |
outputs=filtered_df,
|
| 270 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 271 |
|
| 272 |
toggle_annotations.change(
|
| 273 |
fn=filter_df,
|
| 274 |
-
inputs=[min_score, max_models_per_month, set_selector],
|
| 275 |
outputs=filtered_df,
|
| 276 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 277 |
|
| 278 |
set_selector.change(
|
| 279 |
fn=filter_df,
|
| 280 |
-
inputs=[min_score, max_models_per_month, set_selector],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
outputs=filtered_df,
|
| 282 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 283 |
|
|
|
|
| 98 |
# get constants
|
| 99 |
min_elo_score, max_elo_score, upper_models_per_month = get_constants(merged_dfs)
|
| 100 |
date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
|
| 101 |
+
orgs = merged_dfs["Overall"].Organization.unique().tolist()
|
| 102 |
|
| 103 |
###################
|
| 104 |
### Build and Plot Data
|
|
|
|
| 110 |
return df.reset_index(drop=True)
|
| 111 |
|
| 112 |
|
| 113 |
+
def filter_df(min_score, max_models_per_month, set_selector, org_selector):
|
| 114 |
df = get_data_split(merged_dfs, set_name=set_selector)
|
| 115 |
|
| 116 |
# filter data
|
| 117 |
+
filtered_df = df[
|
| 118 |
+
(df["rating"] >= min_score) & (df["Organization"].isin(org_selector))
|
| 119 |
+
]
|
| 120 |
|
| 121 |
filtered_df = (
|
| 122 |
filtered_df.groupby(["Month-Year", "License"], group_keys=False)
|
|
|
|
| 219 |
</div>
|
| 220 |
"""
|
| 221 |
)
|
| 222 |
+
with gr.Group():
|
| 223 |
+
with gr.Row(variant="compact"):
|
| 224 |
+
set_selector = gr.Dropdown(
|
| 225 |
+
choices=list(CAT_NAME_TO_EXPLANATION.keys()),
|
| 226 |
+
label="Select Category",
|
| 227 |
+
value="Overall",
|
| 228 |
+
info="Select the category to visualize",
|
| 229 |
+
)
|
| 230 |
+
min_score = gr.Slider(
|
| 231 |
+
minimum=min_elo_score,
|
| 232 |
+
maximum=max_elo_score,
|
| 233 |
+
value=(max_elo_score - min_elo_score) * 0.3 + min_elo_score,
|
| 234 |
+
step=50,
|
| 235 |
+
label="Minimum ELO Score",
|
| 236 |
+
info="Filter out low scoring models",
|
| 237 |
+
)
|
| 238 |
+
max_models_per_month = gr.Slider(
|
| 239 |
+
value=upper_models_per_month - 2,
|
| 240 |
+
minimum=1,
|
| 241 |
+
maximum=upper_models_per_month,
|
| 242 |
+
step=1,
|
| 243 |
+
label="Max Models per Month (per License)",
|
| 244 |
+
info="Limit to N best models per month per license to reduce clutter",
|
| 245 |
+
)
|
| 246 |
+
toggle_annotations = gr.Radio(
|
| 247 |
+
choices=[True, False],
|
| 248 |
+
label="Overlay Best Model Name",
|
| 249 |
+
value=True,
|
| 250 |
+
info="Toggle to overlay the name of the best model per month per license",
|
| 251 |
+
)
|
| 252 |
+
with gr.Row(variant="compact"):
|
| 253 |
+
with gr.Accordion("More options", open=False):
|
| 254 |
+
org_selector = gr.Dropdown(
|
| 255 |
+
choices=orgs,
|
| 256 |
+
label="Filter by Organization",
|
| 257 |
+
value=orgs,
|
| 258 |
+
multiselect=True,
|
| 259 |
+
info="Limit organizations included in plot",
|
| 260 |
+
)
|
| 261 |
|
| 262 |
# Show plot
|
| 263 |
plot = gr.Plot()
|
|
|
|
| 265 |
|
| 266 |
demo.load(
|
| 267 |
fn=filter_df,
|
| 268 |
+
inputs=[min_score, max_models_per_month, set_selector, org_selector],
|
| 269 |
outputs=filtered_df,
|
| 270 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 271 |
|
| 272 |
min_score.change(
|
| 273 |
fn=filter_df,
|
| 274 |
+
inputs=[min_score, max_models_per_month, set_selector, org_selector],
|
| 275 |
outputs=filtered_df,
|
| 276 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 277 |
|
| 278 |
max_models_per_month.change(
|
| 279 |
fn=filter_df,
|
| 280 |
+
inputs=[min_score, max_models_per_month, set_selector, org_selector],
|
| 281 |
outputs=filtered_df,
|
| 282 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 283 |
|
| 284 |
toggle_annotations.change(
|
| 285 |
fn=filter_df,
|
| 286 |
+
inputs=[min_score, max_models_per_month, set_selector, org_selector],
|
| 287 |
outputs=filtered_df,
|
| 288 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 289 |
|
| 290 |
set_selector.change(
|
| 291 |
fn=filter_df,
|
| 292 |
+
inputs=[min_score, max_models_per_month, set_selector, org_selector],
|
| 293 |
+
outputs=filtered_df,
|
| 294 |
+
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 295 |
+
|
| 296 |
+
org_selector.change(
|
| 297 |
+
fn=filter_df,
|
| 298 |
+
inputs=[min_score, max_models_per_month, set_selector, org_selector],
|
| 299 |
outputs=filtered_df,
|
| 300 |
).then(fn=build_plot, inputs=[toggle_annotations, filtered_df], outputs=plot)
|
| 301 |
|