Spaces:
Build error
Build error
initial app file
Browse files
app.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
import subprocess
|
| 5 |
+
import os
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
|
| 8 |
+
# ... any other imports you need ...
|
| 9 |
+
|
| 10 |
+
# ------------------------------------------------------------------------------
|
| 11 |
+
# 1. Load your models ONCE in global scope (so they don't reload on every run).
|
| 12 |
+
# ------------------------------------------------------------------------------
|
| 13 |
+
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_sd_pipeline(base_model_path: str, fine_tuned_path: str):
|
| 16 |
+
# Safety checker dummy function for demonstration:
|
| 17 |
+
def dummy_safety_checker(images, clip_input):
|
| 18 |
+
return images, False
|
| 19 |
+
|
| 20 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 21 |
+
base_model_path,
|
| 22 |
+
torch_dtype=torch.float16
|
| 23 |
+
)
|
| 24 |
+
pipe.to("cuda")
|
| 25 |
+
|
| 26 |
+
# Load the fine-tuned UNet
|
| 27 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 28 |
+
fine_tuned_path,
|
| 29 |
+
subfolder="unet",
|
| 30 |
+
torch_dtype=torch.float16
|
| 31 |
+
).to('cuda')
|
| 32 |
+
|
| 33 |
+
pipe.unet = unet
|
| 34 |
+
pipe.safety_checker = dummy_safety_checker
|
| 35 |
+
|
| 36 |
+
return pipe
|
| 37 |
+
|
| 38 |
+
# Similarly, if you want to load Zero123++ or other pipelines:
|
| 39 |
+
@st.cache_resource
|
| 40 |
+
def load_zero123_pipeline():
|
| 41 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 42 |
+
|
| 43 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 44 |
+
"sudo-ai/zero123plus-v1.2",
|
| 45 |
+
custom_pipeline="sudo-ai/zero123plus-pipeline",
|
| 46 |
+
torch_dtype=torch.float16
|
| 47 |
+
)
|
| 48 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 49 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
| 50 |
+
)
|
| 51 |
+
pipeline.to("cuda")
|
| 52 |
+
return pipeline
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Example placeholders for the SyncDreamer command or internal functions:
|
| 56 |
+
def run_syncdreamer(input_path: str, output_dir: str = "syncdreamer_output"):
|
| 57 |
+
"""Runs SyncDreamer on input_path and places results into output_dir."""
|
| 58 |
+
st.info("Running SyncDreamer... (placeholder)")
|
| 59 |
+
# This is where your actual command would go:
|
| 60 |
+
# subprocess.run([...], check=True)
|
| 61 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 62 |
+
# (In a real scenario, you'd handle .jpg to .png conversion, etc.)
|
| 63 |
+
st.success(f"SyncDreamer completed. Results in: {output_dir}")
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Helper function for Zero123++ pipeline
|
| 67 |
+
def make_square_min_dim(image: Image.Image, min_side: int = 320) -> Image.Image:
|
| 68 |
+
w, h = image.size
|
| 69 |
+
scale = max(min_side / w, min_side / h, 1.0)
|
| 70 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
| 71 |
+
image = image.resize((new_w, new_h), Image.LANCZOS)
|
| 72 |
+
|
| 73 |
+
side = max(new_w, new_h)
|
| 74 |
+
new_img = Image.new(mode="RGB", size=(side, side), color=(255, 255, 255))
|
| 75 |
+
offset_x = (side - new_w) // 2
|
| 76 |
+
offset_y = (side - new_h) // 2
|
| 77 |
+
new_img.paste(image, (offset_x, offset_y))
|
| 78 |
+
return new_img
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# ------------------------------------------------------------------------------
|
| 82 |
+
# 2. Streamlit application.
|
| 83 |
+
# ------------------------------------------------------------------------------
|
| 84 |
+
|
| 85 |
+
def main():
|
| 86 |
+
st.title("Funko Generator Demo")
|
| 87 |
+
|
| 88 |
+
# Let’s load pipelines in the background:
|
| 89 |
+
base_model_path = "runwayml/stable-diffusion-v1-5"
|
| 90 |
+
fine_tuned_path = "/content/drive/MyDrive/CC_Project/checkpoint-3000" # adapt if needed
|
| 91 |
+
sd_pipe = load_sd_pipeline(base_model_path, fine_tuned_path)
|
| 92 |
+
|
| 93 |
+
zero123_pipe = load_zero123_pipeline() # For multi-view generation
|
| 94 |
+
|
| 95 |
+
# Session state to hold:
|
| 96 |
+
if "latest_image" not in st.session_state:
|
| 97 |
+
st.session_state["latest_image"] = None
|
| 98 |
+
if "original_prompt" not in st.session_state:
|
| 99 |
+
st.session_state["original_prompt"] = ""
|
| 100 |
+
|
| 101 |
+
# --------------------------------------------------------------------------
|
| 102 |
+
# A) Prompt input & initial generation
|
| 103 |
+
# --------------------------------------------------------------------------
|
| 104 |
+
st.subheader("1. Enter your Funko prompt")
|
| 105 |
+
|
| 106 |
+
# Show examples in the UI
|
| 107 |
+
with st.expander("Examples of valid prompts"):
|
| 108 |
+
st.write("""
|
| 109 |
+
- A standing plain human Funko in a blue shirt and blue pants with round black eyes with glasses with a belt.
|
| 110 |
+
- A sitting angry animal Funko with squint black eyes.
|
| 111 |
+
- A standing happy robot Funko in a brown shirt and grey pants with squint black eyes with cane and monocle.
|
| 112 |
+
- ...
|
| 113 |
+
""")
|
| 114 |
+
|
| 115 |
+
user_prompt = st.text_area("Type your Funko prompt here:",
|
| 116 |
+
value="A standing plain human Funko in a blue shirt and blue pants with round black eyes with glasses.")
|
| 117 |
+
generate_button = st.button("Generate Initial Funko")
|
| 118 |
+
|
| 119 |
+
if generate_button:
|
| 120 |
+
st.session_state["original_prompt"] = user_prompt
|
| 121 |
+
with st.spinner("Generating image..."):
|
| 122 |
+
with torch.autocast("cuda"):
|
| 123 |
+
image = sd_pipe(user_prompt, num_inference_steps=50).images[0]
|
| 124 |
+
st.session_state["latest_image"] = image
|
| 125 |
+
|
| 126 |
+
st.success("Image generated!")
|
| 127 |
+
|
| 128 |
+
if st.session_state["latest_image"] is not None:
|
| 129 |
+
st.image(st.session_state["latest_image"], caption="Latest Generated Image", use_column_width=True)
|
| 130 |
+
|
| 131 |
+
# --------------------------------------------------------------------------
|
| 132 |
+
# B) Change the Funko (attributes)
|
| 133 |
+
# --------------------------------------------------------------------------
|
| 134 |
+
st.subheader("2. Modify Funko Attributes")
|
| 135 |
+
st.write("Select new attributes below. If you choose 'none', that attribute will be ignored/omitted in the prompt.")
|
| 136 |
+
|
| 137 |
+
# Possible attributes (from your code) — including 'none'
|
| 138 |
+
characters = ['none', 'animal', 'human', 'robot']
|
| 139 |
+
eyes_shape = ['none', 'anime', 'black', 'closed', 'round', 'square', 'squint']
|
| 140 |
+
eyes_color = ['none', 'black', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
| 141 |
+
eyewear = ['none', 'eyepatch', 'glasses', 'goggles', 'helmet', 'mask', 'sunglasses']
|
| 142 |
+
hair_color = ['none', 'black', 'blonde', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
| 143 |
+
emotion = ['none', 'angry', 'happy', 'plain', 'sad']
|
| 144 |
+
shirt_color = ['none', 'black', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
| 145 |
+
pants_color = ['none', 'black', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
| 146 |
+
accessories = ['none', 'bag', 'ball', 'belt', 'bird', 'book', 'cape', 'guitar', 'hat', 'helmet', 'sword', 'wand', 'wings']
|
| 147 |
+
pose = ['none', 'sitting', 'standing']
|
| 148 |
+
|
| 149 |
+
# Create selection widgets:
|
| 150 |
+
chosen_char = st.selectbox("Character:", characters)
|
| 151 |
+
chosen_eyes_shape = st.selectbox("Eyes Shape:", eyes_shape)
|
| 152 |
+
chosen_eyes_color = st.selectbox("Eyes Color:", eyes_color)
|
| 153 |
+
chosen_eyewear = st.selectbox("Eyewear:", eyewear)
|
| 154 |
+
chosen_hair_color = st.selectbox("Hair Color:", hair_color)
|
| 155 |
+
chosen_emotion = st.selectbox("Emotion:", emotion)
|
| 156 |
+
chosen_shirt_color = st.selectbox("Shirt Color:", shirt_color)
|
| 157 |
+
chosen_pants_color = st.selectbox("Pants Color:", pants_color)
|
| 158 |
+
chosen_accessories = st.selectbox("Accessories:", accessories)
|
| 159 |
+
chosen_pose = st.selectbox("Pose:", pose)
|
| 160 |
+
|
| 161 |
+
# Now we form a modified prompt. For demonstration,
|
| 162 |
+
# let's do something simple: we take the original prompt, parse it, and
|
| 163 |
+
# replace only the attributes that are not 'none'.
|
| 164 |
+
def modify_prompt(base_prompt: str):
|
| 165 |
+
# A simple example: we can build a new prompt from scratch, ignoring the old text.
|
| 166 |
+
# In reality, you might parse the old text or do something more sophisticated.
|
| 167 |
+
new_prompt_segments = []
|
| 168 |
+
|
| 169 |
+
# Pose
|
| 170 |
+
if chosen_pose != 'none':
|
| 171 |
+
new_prompt_segments.append(f"A {chosen_pose}")
|
| 172 |
+
else:
|
| 173 |
+
new_prompt_segments.append("A standing") # default fallback
|
| 174 |
+
|
| 175 |
+
# Emotion + Character
|
| 176 |
+
if chosen_emotion != 'none':
|
| 177 |
+
new_prompt_segments.append(chosen_emotion)
|
| 178 |
+
else:
|
| 179 |
+
new_prompt_segments.append("plain") # fallback
|
| 180 |
+
|
| 181 |
+
if chosen_char != 'none':
|
| 182 |
+
new_prompt_segments.append(chosen_char + " Funko")
|
| 183 |
+
else:
|
| 184 |
+
new_prompt_segments.append("human Funko")
|
| 185 |
+
|
| 186 |
+
# Shirt color
|
| 187 |
+
if chosen_shirt_color != 'none':
|
| 188 |
+
new_prompt_segments.append(f"in a {chosen_shirt_color} shirt")
|
| 189 |
+
else:
|
| 190 |
+
new_prompt_segments.append("in a blue shirt")
|
| 191 |
+
|
| 192 |
+
# Pants color
|
| 193 |
+
if chosen_pants_color != 'none':
|
| 194 |
+
new_prompt_segments.append(f"and {chosen_pants_color} pants")
|
| 195 |
+
else:
|
| 196 |
+
new_prompt_segments.append("and blue pants")
|
| 197 |
+
|
| 198 |
+
# Eyes
|
| 199 |
+
eye_text = []
|
| 200 |
+
if chosen_eyes_shape != 'none':
|
| 201 |
+
eye_text.append(f"{chosen_eyes_shape}")
|
| 202 |
+
else:
|
| 203 |
+
eye_text.append("round")
|
| 204 |
+
if chosen_eyes_color != 'none':
|
| 205 |
+
eye_text.append(f"{chosen_eyes_color}")
|
| 206 |
+
else:
|
| 207 |
+
eye_text.append("black")
|
| 208 |
+
eye_text.append("eyes")
|
| 209 |
+
new_prompt_segments.append("with " + " ".join(eye_text))
|
| 210 |
+
|
| 211 |
+
# Eyewear
|
| 212 |
+
if chosen_eyewear != 'none':
|
| 213 |
+
new_prompt_segments.append(f"with {chosen_eyewear}")
|
| 214 |
+
|
| 215 |
+
# Hair
|
| 216 |
+
if chosen_hair_color != 'none':
|
| 217 |
+
new_prompt_segments.append(f"with {chosen_hair_color} hair")
|
| 218 |
+
|
| 219 |
+
# Accessories
|
| 220 |
+
if chosen_accessories != 'none':
|
| 221 |
+
new_prompt_segments.append(f"with a {chosen_accessories}")
|
| 222 |
+
|
| 223 |
+
return " ".join(new_prompt_segments) + "."
|
| 224 |
+
|
| 225 |
+
if st.button("Generate Modified Funko"):
|
| 226 |
+
if not st.session_state["original_prompt"]:
|
| 227 |
+
st.warning("Please generate an initial Funko (step 1) before modifying it.")
|
| 228 |
+
else:
|
| 229 |
+
new_prompt = modify_prompt(st.session_state["original_prompt"])
|
| 230 |
+
st.write(f"**New Prompt**: {new_prompt}")
|
| 231 |
+
|
| 232 |
+
with st.spinner("Generating modified image..."):
|
| 233 |
+
with torch.autocast("cuda"):
|
| 234 |
+
image = sd_pipe(new_prompt, num_inference_steps=50).images[0]
|
| 235 |
+
st.session_state["latest_image"] = image
|
| 236 |
+
|
| 237 |
+
st.image(st.session_state["latest_image"], caption="Modified Image", use_column_width=True)
|
| 238 |
+
|
| 239 |
+
# --------------------------------------------------------------------------
|
| 240 |
+
# C) Animate the Funko with SyncDreamer
|
| 241 |
+
# --------------------------------------------------------------------------
|
| 242 |
+
st.subheader("3. Animate the Funko (SyncDreamer)")
|
| 243 |
+
st.write("Click the button to run SyncDreamer on the last generated image. (Demo)")
|
| 244 |
+
|
| 245 |
+
if st.button("Animate with SyncDreamer"):
|
| 246 |
+
if st.session_state["latest_image"] is None:
|
| 247 |
+
st.warning("No image found. Please generate a Funko first.")
|
| 248 |
+
else:
|
| 249 |
+
# Save latest image locally so SyncDreamer can process it
|
| 250 |
+
input_path = "latest_funko.png"
|
| 251 |
+
st.session_state["latest_image"].save(input_path)
|
| 252 |
+
run_syncdreamer(input_path, output_dir="syncdreamer_output")
|
| 253 |
+
|
| 254 |
+
# Optionally display a placeholder or actual frames/GIF
|
| 255 |
+
# ...
|
| 256 |
+
st.success("SyncDreamer animation completed (placeholder).")
|
| 257 |
+
|
| 258 |
+
# --------------------------------------------------------------------------
|
| 259 |
+
# D) Multi-View 3D Funko (Zero123++)
|
| 260 |
+
# --------------------------------------------------------------------------
|
| 261 |
+
st.subheader("4. Generate Multi-View 3D Funko (Zero123++)")
|
| 262 |
+
|
| 263 |
+
if st.button("Generate Multi-View 3D"):
|
| 264 |
+
if st.session_state["latest_image"] is None:
|
| 265 |
+
st.warning("No image found. Please generate a Funko first.")
|
| 266 |
+
else:
|
| 267 |
+
# Save the last image as input for Zero123
|
| 268 |
+
input_path = "funko_for_zero123.png"
|
| 269 |
+
st.session_state["latest_image"].save(input_path)
|
| 270 |
+
|
| 271 |
+
# Make sure image is at least 320x320 and square
|
| 272 |
+
original_img = Image.open(input_path).convert("RGB")
|
| 273 |
+
cond = make_square_min_dim(original_img, min_side=320)
|
| 274 |
+
|
| 275 |
+
# Inference
|
| 276 |
+
st.info("Running Zero123++ pipeline... Please wait.")
|
| 277 |
+
with torch.autocast("cuda"):
|
| 278 |
+
result_grid = zero123_pipe(cond, num_inference_steps=50).images[0]
|
| 279 |
+
|
| 280 |
+
result_grid.save("zero123_grid.png")
|
| 281 |
+
st.image(result_grid, caption="Zero123++ Multi-View Grid (640x960)")
|
| 282 |
+
|
| 283 |
+
# Optionally crop and display sub-views
|
| 284 |
+
# Here we crop 6 sub-images of 320x320 from the 640x960 grid:
|
| 285 |
+
coords = [
|
| 286 |
+
(0, 0, 320, 320),
|
| 287 |
+
(320, 0, 640, 320),
|
| 288 |
+
(0, 320, 320, 640),
|
| 289 |
+
(320, 320, 640, 640),
|
| 290 |
+
(0, 640, 320, 960),
|
| 291 |
+
(320, 640, 640, 960),
|
| 292 |
+
]
|
| 293 |
+
st.write("### Generated Views:")
|
| 294 |
+
for i, (x1, y1, x2, y2) in enumerate(coords):
|
| 295 |
+
sub_img = result_grid.crop((x1, y1, x2, y2))
|
| 296 |
+
sub_path = f"zero123_view_{i}.png"
|
| 297 |
+
sub_img.save(sub_path)
|
| 298 |
+
st.image(sub_path, width=256)
|
| 299 |
+
|
| 300 |
+
# --------------------------------------------------------------------------
|
| 301 |
+
# E) Integrate a New Background
|
| 302 |
+
# --------------------------------------------------------------------------
|
| 303 |
+
st.subheader("5. Apply a New Background to Each View")
|
| 304 |
+
|
| 305 |
+
st.write("Upload a background image, then apply it to each previously generated view.")
|
| 306 |
+
bg_file = st.file_uploader("Upload Background Image", type=["png", "jpg", "jpeg"])
|
| 307 |
+
if bg_file is not None:
|
| 308 |
+
st.image(bg_file, caption="Selected Background", width=200)
|
| 309 |
+
|
| 310 |
+
if st.button("Apply Background to Multi-View"):
|
| 311 |
+
if bg_file is None:
|
| 312 |
+
st.warning("No background uploaded.")
|
| 313 |
+
else:
|
| 314 |
+
# Save background to disk:
|
| 315 |
+
bg_path = "background.png"
|
| 316 |
+
with open(bg_path, "wb") as f:
|
| 317 |
+
f.write(bg_file.read())
|
| 318 |
+
|
| 319 |
+
# In a real implementation, you would do the compositing described
|
| 320 |
+
# in your original code with threshold-based masking, etc.
|
| 321 |
+
# For demonstration, let's just say "Applied!"
|
| 322 |
+
st.success("Background compositing placeholder done. Check your images in the output folder.")
|
| 323 |
+
|
| 324 |
+
st.write("End of the Demo. Adjust code as needed for your pipeline paths and logic.")
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
if __name__ == "__main__":
|
| 328 |
+
main()
|