Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import librosa
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from speechbrain.pretrained import Tacotron2, HIFIGAN
|
| 9 |
+
|
| 10 |
+
# Paths
|
| 11 |
+
output_path = "./processed_data/"
|
| 12 |
+
os.makedirs(output_path, exist_ok=True)
|
| 13 |
+
|
| 14 |
+
# Preprocessing Function
|
| 15 |
+
def preprocess_audio(audio_path, max_length=1000):
|
| 16 |
+
"""
|
| 17 |
+
Preprocess the audio file to generate mel spectrogram with uniform length.
|
| 18 |
+
"""
|
| 19 |
+
wav, sr = librosa.load(audio_path, sr=24000)
|
| 20 |
+
mel_spectrogram = librosa.feature.melspectrogram(
|
| 21 |
+
y=wav, sr=sr, n_fft=2048, hop_length=256, n_mels=120
|
| 22 |
+
)
|
| 23 |
+
mel_spectrogram = np.log(np.maximum(1e-5, mel_spectrogram)) # Log normalization
|
| 24 |
+
|
| 25 |
+
# Ensure all mel spectrograms have the same time dimension
|
| 26 |
+
if mel_spectrogram.shape[1] > max_length: # Truncate
|
| 27 |
+
mel_spectrogram = mel_spectrogram[:, :max_length]
|
| 28 |
+
else: # Pad
|
| 29 |
+
padding = max_length - mel_spectrogram.shape[1]
|
| 30 |
+
mel_spectrogram = np.pad(mel_spectrogram, ((0, 0), (0, padding)), mode="constant")
|
| 31 |
+
|
| 32 |
+
return mel_spectrogram
|
| 33 |
+
|
| 34 |
+
# Function to Split Long Text into Chunks
|
| 35 |
+
def split_text_into_chunks(text, max_chunk_length=200):
|
| 36 |
+
"""
|
| 37 |
+
Splits the input text into smaller chunks, each of up to `max_chunk_length` characters.
|
| 38 |
+
"""
|
| 39 |
+
words = text.split()
|
| 40 |
+
chunks = []
|
| 41 |
+
current_chunk = []
|
| 42 |
+
current_length = 0
|
| 43 |
+
|
| 44 |
+
for word in words:
|
| 45 |
+
if current_length + len(word) + 1 > max_chunk_length:
|
| 46 |
+
chunks.append(" ".join(current_chunk))
|
| 47 |
+
current_chunk = []
|
| 48 |
+
current_length = 0
|
| 49 |
+
current_chunk.append(word)
|
| 50 |
+
current_length += len(word) + 1 # Account for space
|
| 51 |
+
|
| 52 |
+
if current_chunk:
|
| 53 |
+
chunks.append(" ".join(current_chunk))
|
| 54 |
+
|
| 55 |
+
return chunks
|
| 56 |
+
|
| 57 |
+
# Generate Speech for Long Text
|
| 58 |
+
def generate_speech(text, tacotron2, hifi_gan, output_file="long_speech.wav", sample_rate=24000):
|
| 59 |
+
"""
|
| 60 |
+
Generates a long speech by splitting the text into chunks, generating audio for each,
|
| 61 |
+
and concatenating the waveforms.
|
| 62 |
+
"""
|
| 63 |
+
chunks = split_text_into_chunks(text)
|
| 64 |
+
waveforms = []
|
| 65 |
+
|
| 66 |
+
for chunk in tqdm(chunks, desc="Generating speech"):
|
| 67 |
+
text_input = [str(chunk)]
|
| 68 |
+
mel_output, mel_length, alignment = tacotron2.encode_batch(text_input)
|
| 69 |
+
waveform = hifi_gan.decode_batch(mel_output)
|
| 70 |
+
waveforms.append(waveform.squeeze().cpu().numpy())
|
| 71 |
+
|
| 72 |
+
# Concatenate waveforms
|
| 73 |
+
long_waveform = np.concatenate(waveforms, axis=0)
|
| 74 |
+
|
| 75 |
+
# Save the concatenated audio
|
| 76 |
+
sf.write(output_file, long_waveform, sample_rate)
|
| 77 |
+
print(f"Audio has been synthesized and saved as '{output_file}'.")
|
| 78 |
+
|
| 79 |
+
# Load Pretrained Tacotron2 and HiFi-GAN
|
| 80 |
+
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tacotron2")
|
| 81 |
+
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_hifigan")
|
| 82 |
+
|
| 83 |
+
# Fine-tuned model (if available)
|
| 84 |
+
if os.path.exists("indic_accent_tacotron2.pth"):
|
| 85 |
+
tacotron2.load_state_dict(torch.load("indic_accent_tacotron2.pth"))
|
| 86 |
+
print("Fine-tuned Tacotron2 model loaded successfully.")
|
| 87 |
+
|
| 88 |
+
# Streamlit UI
|
| 89 |
+
st.title("Text to Speech Generator")
|
| 90 |
+
|
| 91 |
+
# Text input for the user
|
| 92 |
+
text_input = st.text_area("Enter the text you want to convert to speech:",
|
| 93 |
+
"Good morning, lovely listeners! This is your favorite RJ, Sapna...")
|
| 94 |
+
|
| 95 |
+
# Button to generate speech
|
| 96 |
+
if st.button("Generate Speech"):
|
| 97 |
+
if text_input:
|
| 98 |
+
output_file = "output_long_speech.wav"
|
| 99 |
+
|
| 100 |
+
# Generate speech for the provided text
|
| 101 |
+
with st.spinner("Generating speech..."):
|
| 102 |
+
generate_speech(text_input, tacotron2, hifi_gan, output_file)
|
| 103 |
+
|
| 104 |
+
# Provide download link
|
| 105 |
+
st.success("Speech generation complete!")
|
| 106 |
+
st.audio(output_file, format="audio/wav")
|
| 107 |
+
st.download_button(label="Download Speech", data=open(output_file, "rb").read(), file_name=output_file, mime="audio/wav")
|
| 108 |
+
else:
|
| 109 |
+
st.warning("Please enter some text to generate speech.")
|