Spaces:
Runtime error
Runtime error
Ansal
commited on
Commit
·
ab52a15
1
Parent(s):
05a1f51
initial commit
Browse files
app.py
CHANGED
|
@@ -1,151 +1,92 @@
|
|
| 1 |
-
from pathlib import Path
|
| 2 |
-
from typing import List, Dict, Tuple
|
| 3 |
-
import matplotlib.colors as mpl_colors
|
| 4 |
-
|
| 5 |
import pandas as pd
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
from shiny import App, Inputs, Outputs, Session, reactive, render,
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
numeric_cols,
|
| 29 |
-
selected="Bill Length (mm)",
|
| 30 |
-
),
|
| 31 |
-
ui.input_selectize(
|
| 32 |
-
"yvar",
|
| 33 |
-
"Y variable",
|
| 34 |
-
numeric_cols,
|
| 35 |
-
selected="Bill Depth (mm)",
|
| 36 |
-
),
|
| 37 |
-
ui.input_checkbox_group(
|
| 38 |
-
"species", "Filter by species", species, selected=species
|
| 39 |
-
),
|
| 40 |
-
ui.hr(),
|
| 41 |
-
ui.input_switch("by_species", "Show species", value=True),
|
| 42 |
-
ui.input_switch("show_margins", "Show marginal plots", value=True),
|
| 43 |
-
),
|
| 44 |
-
ui.output_ui("value_boxes"),
|
| 45 |
-
ui.output_plot("scatter", fill=True),
|
| 46 |
-
ui.help_text(
|
| 47 |
-
"Artwork by ",
|
| 48 |
-
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
| 49 |
-
class_="text-end",
|
| 50 |
-
),
|
| 51 |
-
),
|
| 52 |
)
|
| 53 |
|
| 54 |
-
|
| 55 |
def server(input: Inputs, output: Outputs, session: Session):
|
| 56 |
-
@reactive.
|
| 57 |
-
def
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
# Only include boxes for _selected_ species
|
| 123 |
-
if name in input.species()
|
| 124 |
-
]
|
| 125 |
-
|
| 126 |
-
return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# "darkorange", "purple", "cyan4"
|
| 130 |
-
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
| 131 |
-
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
| 132 |
-
|
| 133 |
-
palette: Dict[str, Tuple[float, float, float]] = {
|
| 134 |
-
"Adelie": colors[0],
|
| 135 |
-
"Chinstrap": colors[1],
|
| 136 |
-
"Gentoo": colors[2],
|
| 137 |
-
"default": sns.color_palette()[0], # type: ignore
|
| 138 |
-
}
|
| 139 |
-
|
| 140 |
-
bg_palette = {}
|
| 141 |
-
# Use `sns.set_style("whitegrid")` to help find approx alpha value
|
| 142 |
-
for name, col in palette.items():
|
| 143 |
-
# Adjusted n_colors until `axe` accessibility did not complain about color contrast
|
| 144 |
-
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
app = App(
|
| 148 |
-
app_ui,
|
| 149 |
-
server,
|
| 150 |
-
static_assets=str(www_dir),
|
| 151 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
import tempfile
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from shiny import App, Inputs, Outputs, Session, reactive, render, ui
|
| 6 |
+
from shiny.types import FileInfo
|
| 7 |
+
import json
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
from transformers import SamModel
|
| 12 |
+
import torchvision.transforms as transforms
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
|
| 15 |
+
image_resize_transform = transforms.Compose([
|
| 16 |
+
transforms.Resize((1024, 1024)),
|
| 17 |
+
transforms.ToTensor()
|
| 18 |
+
])
|
| 19 |
+
|
| 20 |
+
app_ui = ui.page_fluid(
|
| 21 |
+
ui.input_file("file2", "Choose Image", accept=".jpg, .jpeg, .png, .tiff, .tif", multiple=False),
|
| 22 |
+
ui.output_image("original_image"),
|
| 23 |
+
ui.output_image("image_display")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
|
|
|
|
| 26 |
def server(input: Inputs, output: Outputs, session: Session):
|
| 27 |
+
@reactive.calc
|
| 28 |
+
def loaded_image():
|
| 29 |
+
file: list[FileInfo] | None = input.file2()
|
| 30 |
+
if file is None:
|
| 31 |
+
return None
|
| 32 |
+
|
| 33 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 34 |
+
model2 = SamModel.from_pretrained("facebook/sam-vit-base")
|
| 35 |
+
model2.load_state_dict(torch.load('model.pth', map_location=device))
|
| 36 |
+
model2.eval()
|
| 37 |
+
model2.to(device)
|
| 38 |
+
|
| 39 |
+
image = Image.open(file[0]["datapath"]).convert('RGB')
|
| 40 |
+
transform = image_resize_transform
|
| 41 |
+
image_tensor = transform(image).to(device)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs = model2(pixel_values=image_tensor.unsqueeze(0),multimask_output=False)
|
| 46 |
+
predicted_masks = outputs.pred_masks.squeeze(1)
|
| 47 |
+
predicted_masks = predicted_masks[:, 0, :, :]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
mask_tensor = predicted_masks.cpu().detach().squeeze()
|
| 51 |
+
mask_array = mask_tensor.numpy()
|
| 52 |
+
mask_array = (mask_array * 255).astype(np.uint8)
|
| 53 |
+
mask = Image.fromarray(mask_array)
|
| 54 |
+
mask = mask.resize((1024, 1024), Image.LANCZOS)
|
| 55 |
+
mask = mask.convert('RGBA')
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
alpha = Image.new('L', mask.size, 128)
|
| 59 |
+
mask.putalpha(alpha)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
image = Image.open(file[0]["datapath"]).convert('RGB')
|
| 63 |
+
image = image.resize((1024, 1024), Image.LANCZOS)
|
| 64 |
+
image = image.convert('RGBA')
|
| 65 |
+
|
| 66 |
+
combined = Image.alpha_composite(image, mask)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
combined_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
| 70 |
+
original_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
| 71 |
+
image.save(original_file.name, "PNG", quality=100)
|
| 72 |
+
mask.save(combined_file.name, "PNG", quality=100)
|
| 73 |
+
|
| 74 |
+
return original_file.name, combined_file.name
|
| 75 |
+
|
| 76 |
+
@render.image
|
| 77 |
+
def original_image():
|
| 78 |
+
result = loaded_image()
|
| 79 |
+
if result is None:
|
| 80 |
+
return None
|
| 81 |
+
img_path, _ = result
|
| 82 |
+
return {"src": img_path, "width": "300px"}
|
| 83 |
+
|
| 84 |
+
@render.image
|
| 85 |
+
def image_display():
|
| 86 |
+
result = loaded_image()
|
| 87 |
+
if result is None:
|
| 88 |
+
return None
|
| 89 |
+
_, img_path = result
|
| 90 |
+
return {"src": img_path, "width": "300px"}
|
| 91 |
+
|
| 92 |
+
app = App(app_ui, server)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|