Update app.py
Browse files
app.py
CHANGED
|
@@ -1,124 +1,80 @@
|
|
| 1 |
-
# Re-build-1
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
-
import faiss
|
| 5 |
-
import numpy as np
|
| 6 |
-
import os
|
| 7 |
-
from datasets import load_dataset, Dataset
|
| 8 |
-
from huggingface_hub import HfApi, hf_hub_download
|
| 9 |
-
from PyPDF2 import PdfReader
|
| 10 |
from transformers import AutoTokenizer, AutoModel
|
| 11 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Function to split text into chunks
|
| 35 |
-
def get_chunks(text, chunk_size=500):
|
| 36 |
-
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
| 37 |
-
|
| 38 |
-
# Function to generate embeddings
|
| 39 |
-
def generate_embedding(text):
|
| 40 |
-
inputs = bi_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 41 |
-
with torch.no_grad():
|
| 42 |
-
outputs = bi_model(**inputs)
|
| 43 |
-
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 44 |
-
return embedding / np.linalg.norm(embedding) # Normalize for FAISS
|
| 45 |
-
|
| 46 |
-
# Function to load existing FAISS index from HF
|
| 47 |
-
def load_existing_faiss_index():
|
| 48 |
-
try:
|
| 49 |
-
index_path = hf_hub_download(repo_id=HF_DATASET_NAME, filename=INDEX_FILE, repo_type="dataset")
|
| 50 |
-
index = faiss.read_index(index_path)
|
| 51 |
-
print("✅ Loaded existing FAISS index.")
|
| 52 |
-
return index
|
| 53 |
-
except:
|
| 54 |
-
print("⚠️ No existing FAISS index found. Creating a new one.")
|
| 55 |
-
return faiss.IndexFlatIP(768)
|
| 56 |
-
|
| 57 |
-
# Main function to process PDFs & update HF Dataset
|
| 58 |
-
def process_pdfs_and_store(pdf_files):
|
| 59 |
-
index = load_existing_faiss_index()
|
| 60 |
-
|
| 61 |
-
try:
|
| 62 |
-
dataset = load_dataset(HF_DATASET_NAME, split="train")
|
| 63 |
-
existing_chunks = dataset["chunk_text"]
|
| 64 |
-
existing_embeddings = [np.array(emb) for emb in dataset["embedding"]]
|
| 65 |
-
existing_files = dataset["source_file"]
|
| 66 |
-
except:
|
| 67 |
-
existing_chunks, existing_embeddings, existing_files = [], [], []
|
| 68 |
-
|
| 69 |
-
all_chunks, all_embeddings = [], []
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
for pdf_file in pdf_files:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
all_embeddings.extend(embeddings)
|
| 78 |
-
|
| 79 |
-
all_embeddings_np = np.array(all_embeddings)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
combined_embeddings = existing_embeddings + list(all_embeddings_np)
|
| 84 |
-
combined_files = existing_files + [pdf_file.name for pdf_file in pdf_files for _ in range(len(all_chunks))]
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
faiss.write_index(index, INDEX_FILE)
|
| 93 |
-
hf_api.upload_file(path_or_fileobj=INDEX_FILE, path_in_repo=INDEX_FILE, repo_id=HF_DATASET_NAME, repo_type="dataset")
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
dataset.push_to_hub(HF_DATASET_NAME, split="train")
|
| 104 |
-
|
| 105 |
-
return f"✅ Successfully updated FAISS index & embeddings in {HF_DATASET_NAME}. Total Chunks: {len(combined_chunks)}."
|
| 106 |
-
|
| 107 |
-
# Gradio UI
|
| 108 |
-
with gr.Blocks() as demo:
|
| 109 |
-
gr.Markdown("# 🚀 SCDD Embeddings Generator - Hugging Face Spaces")
|
| 110 |
-
gr.Markdown("Upload PDFs to generate and store embeddings in a FAISS vector store on Hugging Face.")
|
| 111 |
-
|
| 112 |
-
pdf_input = gr.Files(file_types=[".pdf"], label="Upload Reference PDFs (Up to 3)", interactive=True)
|
| 113 |
-
submit_button = gr.Button("Generate & Store Embeddings")
|
| 114 |
-
|
| 115 |
-
output_text = gr.Textbox(label="Status")
|
| 116 |
-
|
| 117 |
-
submit_button.click(
|
| 118 |
-
fn=process_pdfs_and_store,
|
| 119 |
-
inputs=[pdf_input],
|
| 120 |
-
outputs=[output_text]
|
| 121 |
-
)
|
| 122 |
|
| 123 |
-
# Launch Gradio App
|
| 124 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PyPDF2 import PdfReader
|
| 6 |
+
from pinecone import Pinecone, ServerlessSpec, CloudProvider, AwsRegion, VectorType
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
+
# Load NASA-specific bi-encoder model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("nasa-impact/nasa-smd-ibm-st-v2")
|
| 11 |
+
model = AutoModel.from_pretrained("nasa-impact/nasa-smd-ibm-st-v2")
|
| 12 |
+
|
| 13 |
+
# Initialize Pinecone client
|
| 14 |
+
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 15 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
| 16 |
+
|
| 17 |
+
# Create Pinecone index if it doesn't exist
|
| 18 |
+
index_name = "scdd-index"
|
| 19 |
+
if index_name not in pc.list_indexes().names():
|
| 20 |
+
pc.create_index(
|
| 21 |
+
name=index_name,
|
| 22 |
+
dimension=768,
|
| 23 |
+
spec=ServerlessSpec(
|
| 24 |
+
cloud=CloudProvider.AWS,
|
| 25 |
+
region=AwsRegion.US_EAST_1
|
| 26 |
+
),
|
| 27 |
+
vector_type=VectorType.DENSE,
|
| 28 |
+
metric="cosine"
|
| 29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Connect to the Pinecone index
|
| 32 |
+
index = pc.Index(index_name)
|
| 33 |
+
|
| 34 |
+
# Function to encode text using bi-encoder in batches
|
| 35 |
+
def encode_chunks_batch(chunks, batch_size=8):
|
| 36 |
+
embeddings = []
|
| 37 |
+
for i in range(0, len(chunks), batch_size):
|
| 38 |
+
batch_chunks = chunks[i:i+batch_size]
|
| 39 |
+
inputs = tokenizer(batch_chunks, return_tensors='pt', padding=True, truncation=True, max_length=128)
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
output = model(**inputs)
|
| 42 |
+
batch_embeddings = output.last_hidden_state.mean(dim=1)
|
| 43 |
+
batch_embeddings = batch_embeddings / batch_embeddings.norm(dim=1, keepdim=True)
|
| 44 |
+
embeddings.extend(batch_embeddings.cpu().numpy())
|
| 45 |
+
return embeddings
|
| 46 |
+
|
| 47 |
+
# Function to process PDFs and upsert embeddings to Pinecone
|
| 48 |
+
def process_pdfs(pdf_files):
|
| 49 |
for pdf_file in pdf_files:
|
| 50 |
+
reader = PdfReader(pdf_file.name)
|
| 51 |
+
pdf_text = "".join(page.extract_text() for page in reader.pages if page.extract_text())
|
| 52 |
+
|
| 53 |
+
# Split text into smaller chunks
|
| 54 |
+
chunks = [pdf_text[i:i+500] for i in range(0, len(pdf_text), 500)]
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Generate embeddings in batches
|
| 57 |
+
embeddings = encode_chunks_batch(chunks, batch_size=8)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Prepare data for Pinecone
|
| 60 |
+
vectors = [
|
| 61 |
+
(f"{os.path.basename(pdf_file.name)}-chunk-{idx}", embedding.tolist(), {"text": chunk})
|
| 62 |
+
for idx, (embedding, chunk) in enumerate(zip(embeddings, chunks))
|
| 63 |
+
]
|
| 64 |
|
| 65 |
+
# Upsert embeddings into Pinecone
|
| 66 |
+
index.upsert(vectors)
|
| 67 |
|
| 68 |
+
return f"Processed {len(pdf_files)} PDF(s) successfully and embeddings stored in Pinecone."
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# Gradio Interface
|
| 71 |
+
demo = gr.Interface(
|
| 72 |
+
fn=process_pdfs,
|
| 73 |
+
inputs=gr.Files(label="Upload PDFs", file_types=[".pdf"]),
|
| 74 |
+
outputs="text",
|
| 75 |
+
title="NASA Bi-encoder PDF Embedding & Pinecone Storage",
|
| 76 |
+
description="Upload PDF files to generate embeddings with NASA Bi-encoder and store in Pinecone."
|
| 77 |
+
)
|
| 78 |
|
| 79 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
|
|