Spaces:
Running
Running
Commit
·
6921fc0
1
Parent(s):
6b28c2b
Update logic and add tests
Browse files
.github/scripts/test_wer_regression_check.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Test script for WER regression detection
|
| 4 |
+
Tests all regression detection functions with synthetic and real data
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
import sys
|
| 9 |
+
from wer_regression_check import (
|
| 10 |
+
detect_device_regressions,
|
| 11 |
+
detect_os_regressions,
|
| 12 |
+
detect_release_regressions,
|
| 13 |
+
detect_speed_device_regressions,
|
| 14 |
+
detect_speed_os_regressions,
|
| 15 |
+
detect_speed_release_regressions,
|
| 16 |
+
detect_tokens_device_regressions,
|
| 17 |
+
detect_tokens_os_regressions,
|
| 18 |
+
detect_tokens_release_regressions,
|
| 19 |
+
generate_slack_message,
|
| 20 |
+
load_performance_data
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def test_wer_detection_with_synthetic_data():
|
| 25 |
+
"""Test WER detection with known synthetic data"""
|
| 26 |
+
print("\n" + "="*80)
|
| 27 |
+
print("TEST 1: WER Detection with Synthetic Data")
|
| 28 |
+
print("="*80)
|
| 29 |
+
|
| 30 |
+
# Create synthetic data where we know there should be regressions
|
| 31 |
+
# Historical data (best performances)
|
| 32 |
+
historical_data = [
|
| 33 |
+
# Model A: iPhone has best WER of 10%
|
| 34 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 10.0, "tokens_per_second": 50.0},
|
| 35 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.5, "speed": 9.5, "tokens_per_second": 48.0},
|
| 36 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 10.2, "speed": 9.8, "tokens_per_second": 49.0},
|
| 37 |
+
|
| 38 |
+
# Model B: iOS 17 has best WER of 10%
|
| 39 |
+
{"model": "model-b", "device": "iPhone 15", "os": "iOS 17", "average_wer": 10.0, "speed": 20.0, "tokens_per_second": 100.0},
|
| 40 |
+
{"model": "model-b", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.5, "speed": 19.0, "tokens_per_second": 95.0},
|
| 41 |
+
|
| 42 |
+
# Model C: No regression scenario
|
| 43 |
+
{"model": "model-c", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 10.0, "tokens_per_second": 50.0},
|
| 44 |
+
{"model": "model-c", "device": "iPad Pro", "os": "iOS 18", "average_wer": 10.5, "speed": 9.5, "tokens_per_second": 48.0},
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
# Current data (latest release with regressions)
|
| 48 |
+
current_data = [
|
| 49 |
+
# Model A: iPad Pro has regressed to 15% WER (50% worse than best 10%)
|
| 50 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 15.0, "speed": 8.0, "tokens_per_second": 40.0},
|
| 51 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.3, "speed": 9.7, "tokens_per_second": 49.5},
|
| 52 |
+
|
| 53 |
+
# Model B: iOS 18 has regressed to 13% WER (30% worse than best 10%)
|
| 54 |
+
{"model": "model-b", "device": "iPhone 15", "os": "iOS 18", "average_wer": 13.0, "speed": 15.0, "tokens_per_second": 75.0},
|
| 55 |
+
|
| 56 |
+
# Model C: Still within 20% (11% vs best 10%)
|
| 57 |
+
{"model": "model-c", "device": "iPad Pro", "os": "iOS 18", "average_wer": 11.0, "speed": 9.0, "tokens_per_second": 45.0},
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
# Test device regressions
|
| 61 |
+
device_regressions = detect_device_regressions(current_data, historical_data, threshold=20.0)
|
| 62 |
+
print(f"\n✓ Device WER Regressions Found: {len(device_regressions)}")
|
| 63 |
+
|
| 64 |
+
# Debug: print all found regressions
|
| 65 |
+
for r in device_regressions:
|
| 66 |
+
print(f" - {r['model']}: {r['device']} has {r['current_value']}% WER vs best {r['best_value']}% (diff: {r['percentage_diff']}%)")
|
| 67 |
+
|
| 68 |
+
# Model A should trigger (iPad Pro is ~40% worse than iPhone)
|
| 69 |
+
# Model C should NOT trigger (iPad Pro is only 10% worse)
|
| 70 |
+
assert len(device_regressions) >= 1, f"Expected at least 1 device regression, got {len(device_regressions)}"
|
| 71 |
+
|
| 72 |
+
# Verify model-a is in the regressions
|
| 73 |
+
model_a_regressions = [r for r in device_regressions if r["model"] == "model-a"]
|
| 74 |
+
assert len(model_a_regressions) > 0, "Expected model-a to have device regression"
|
| 75 |
+
print(f"\n✓ Model-a correctly flagged for device regression")
|
| 76 |
+
|
| 77 |
+
# Test OS regressions
|
| 78 |
+
os_regressions = detect_os_regressions(current_data, historical_data, threshold=20.0)
|
| 79 |
+
print(f"\n✓ OS WER Regressions Found: {len(os_regressions)}")
|
| 80 |
+
|
| 81 |
+
# Debug: print all found OS regressions
|
| 82 |
+
for r in os_regressions:
|
| 83 |
+
print(f" - {r['model']}: {r['os']} has {r['current_value']}% WER vs best {r['best_value']}% (diff: {r['percentage_diff']}%)")
|
| 84 |
+
|
| 85 |
+
assert len(os_regressions) >= 1, f"Expected at least 1 OS regression, got {len(os_regressions)}"
|
| 86 |
+
|
| 87 |
+
# Verify model-b is in the regressions
|
| 88 |
+
model_b_regressions = [r for r in os_regressions if r["model"] == "model-b"]
|
| 89 |
+
assert len(model_b_regressions) > 0, "Expected model-b to have OS regression"
|
| 90 |
+
print(f"\n✓ Model-b correctly flagged for OS regression")
|
| 91 |
+
|
| 92 |
+
print("\n✅ TEST 1 PASSED: WER detection works correctly with synthetic data")
|
| 93 |
+
return True
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def test_speed_detection_with_synthetic_data():
|
| 97 |
+
"""Test speed detection with known synthetic data"""
|
| 98 |
+
print("\n" + "="*80)
|
| 99 |
+
print("TEST 2: Speed Detection with Synthetic Data")
|
| 100 |
+
print("="*80)
|
| 101 |
+
|
| 102 |
+
# Historical data (best performances)
|
| 103 |
+
historical_data = [
|
| 104 |
+
# Model A: iPhone has best speed of 100
|
| 105 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 100.0, "tokens_per_second": 200.0},
|
| 106 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.5, "speed": 95.0, "tokens_per_second": 190.0},
|
| 107 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 11.0, "speed": 98.0, "tokens_per_second": 195.0},
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
# Current data (with speed regression)
|
| 111 |
+
current_data = [
|
| 112 |
+
# Model A: iPad Pro has regressed to 60 speed (40% slower than best 100)
|
| 113 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 11.0, "speed": 60.0, "tokens_per_second": 120.0},
|
| 114 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.2, "speed": 97.0, "tokens_per_second": 195.0},
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
# Test device speed regressions
|
| 118 |
+
speed_device_regressions = detect_speed_device_regressions(current_data, historical_data, threshold=20.0)
|
| 119 |
+
print(f"\n✓ Device Speed Regressions Found: {len(speed_device_regressions)}")
|
| 120 |
+
assert len(speed_device_regressions) == 1, f"Expected 1 speed device regression, got {len(speed_device_regressions)}"
|
| 121 |
+
print(f" - {speed_device_regressions[0]['model']}: {speed_device_regressions[0]['device']} has {speed_device_regressions[0]['current_value']}x speed vs best {speed_device_regressions[0]['best_value']}x")
|
| 122 |
+
|
| 123 |
+
print("\n✅ TEST 2 PASSED: Speed detection works correctly with synthetic data")
|
| 124 |
+
return True
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def test_tokens_detection_with_synthetic_data():
|
| 128 |
+
"""Test tokens per second detection with known synthetic data"""
|
| 129 |
+
print("\n" + "="*80)
|
| 130 |
+
print("TEST 3: Tokens/Second Detection with Synthetic Data")
|
| 131 |
+
print("="*80)
|
| 132 |
+
|
| 133 |
+
# Historical data (best performances)
|
| 134 |
+
historical_data = [
|
| 135 |
+
# Model A: iPhone has best tokens/sec of 500
|
| 136 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 100.0, "tokens_per_second": 500.0},
|
| 137 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 10.0, "speed": 98.0, "tokens_per_second": 490.0},
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
# Current data (with tokens/sec regression)
|
| 141 |
+
current_data = [
|
| 142 |
+
# Model A: iPad Pro has regressed to 300 tokens/sec (40% slower than best 500)
|
| 143 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 10.0, "speed": 80.0, "tokens_per_second": 300.0},
|
| 144 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.1, "speed": 99.0, "tokens_per_second": 495.0},
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
# Test device tokens regressions
|
| 148 |
+
tokens_device_regressions = detect_tokens_device_regressions(current_data, historical_data, threshold=20.0)
|
| 149 |
+
print(f"\n✓ Device Tokens/Sec Regressions Found: {len(tokens_device_regressions)}")
|
| 150 |
+
assert len(tokens_device_regressions) == 1, f"Expected 1 tokens device regression, got {len(tokens_device_regressions)}"
|
| 151 |
+
print(f" - {tokens_device_regressions[0]['model']}: {tokens_device_regressions[0]['device']} has {tokens_device_regressions[0]['current_value']} tokens/sec vs best {tokens_device_regressions[0]['best_value']}")
|
| 152 |
+
|
| 153 |
+
print("\n✅ TEST 3 PASSED: Tokens/sec detection works correctly with synthetic data")
|
| 154 |
+
return True
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def test_release_regression_detection():
|
| 158 |
+
"""Test release-to-release regression detection"""
|
| 159 |
+
print("\n" + "="*80)
|
| 160 |
+
print("TEST 4: Release-to-Release Regression Detection")
|
| 161 |
+
print("="*80)
|
| 162 |
+
|
| 163 |
+
# Previous release data (best performance)
|
| 164 |
+
previous_data = [
|
| 165 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 100.0, "tokens_per_second": 500.0},
|
| 166 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.5, "speed": 95.0, "tokens_per_second": 490.0},
|
| 167 |
+
]
|
| 168 |
+
|
| 169 |
+
# Current release data (degraded performance - 50% worse)
|
| 170 |
+
current_data = [
|
| 171 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 15.0, "speed": 60.0, "tokens_per_second": 300.0},
|
| 172 |
+
]
|
| 173 |
+
|
| 174 |
+
# Test WER release regression
|
| 175 |
+
wer_release_regressions = detect_release_regressions(current_data, previous_data, threshold=20.0)
|
| 176 |
+
print(f"\n✓ WER Release Regressions Found: {len(wer_release_regressions)}")
|
| 177 |
+
assert len(wer_release_regressions) == 1, f"Expected 1 WER release regression, got {len(wer_release_regressions)}"
|
| 178 |
+
print(f" - {wer_release_regressions[0]['model']}: WER increased from {wer_release_regressions[0]['best_historical_value']}% to {wer_release_regressions[0]['current_value']}%")
|
| 179 |
+
|
| 180 |
+
# Test speed release regression
|
| 181 |
+
speed_release_regressions = detect_speed_release_regressions(current_data, previous_data, threshold=20.0)
|
| 182 |
+
print(f"\n✓ Speed Release Regressions Found: {len(speed_release_regressions)}")
|
| 183 |
+
assert len(speed_release_regressions) == 1, f"Expected 1 speed release regression, got {len(speed_release_regressions)}"
|
| 184 |
+
print(f" - {speed_release_regressions[0]['model']}: Speed decreased from {speed_release_regressions[0]['best_historical_value']}x to {speed_release_regressions[0]['current_value']}x")
|
| 185 |
+
|
| 186 |
+
# Test tokens release regression
|
| 187 |
+
tokens_release_regressions = detect_tokens_release_regressions(current_data, previous_data, threshold=20.0)
|
| 188 |
+
print(f"\n✓ Tokens/Sec Release Regressions Found: {len(tokens_release_regressions)}")
|
| 189 |
+
assert len(tokens_release_regressions) == 1, f"Expected 1 tokens release regression, got {len(tokens_release_regressions)}"
|
| 190 |
+
print(f" - {tokens_release_regressions[0]['model']}: Tokens/sec decreased from {tokens_release_regressions[0]['best_historical_value']} to {tokens_release_regressions[0]['current_value']}")
|
| 191 |
+
|
| 192 |
+
print("\n✅ TEST 4 PASSED: Release-to-release regression detection works correctly")
|
| 193 |
+
return True
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def test_slack_message_generation():
|
| 197 |
+
"""Test Slack message generation"""
|
| 198 |
+
print("\n" + "="*80)
|
| 199 |
+
print("TEST 5: Slack Message Generation")
|
| 200 |
+
print("="*80)
|
| 201 |
+
|
| 202 |
+
# Create sample regressions
|
| 203 |
+
sample_regressions = [
|
| 204 |
+
{
|
| 205 |
+
"type": "device_wer_discrepancy",
|
| 206 |
+
"metric": "WER",
|
| 207 |
+
"model": "test-model",
|
| 208 |
+
"device": "iPad Pro",
|
| 209 |
+
"current_value": 35.0,
|
| 210 |
+
"best_value": 25.0,
|
| 211 |
+
"best_device": "iPhone 15",
|
| 212 |
+
"best_os": "iOS 18",
|
| 213 |
+
"percentage_diff": 40.0
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"type": "device_speed_discrepancy",
|
| 217 |
+
"metric": "Speed",
|
| 218 |
+
"model": "test-model",
|
| 219 |
+
"device": "iPad Pro",
|
| 220 |
+
"current_value": 60.0,
|
| 221 |
+
"best_value": 100.0,
|
| 222 |
+
"best_device": "iPhone 15",
|
| 223 |
+
"best_os": "iOS 18",
|
| 224 |
+
"percentage_diff": 40.0
|
| 225 |
+
}
|
| 226 |
+
]
|
| 227 |
+
|
| 228 |
+
# Generate Slack message
|
| 229 |
+
slack_payload = generate_slack_message(sample_regressions)
|
| 230 |
+
|
| 231 |
+
assert slack_payload is not None, "Expected Slack payload to be generated"
|
| 232 |
+
assert "blocks" in slack_payload, "Expected 'blocks' in Slack payload"
|
| 233 |
+
assert len(slack_payload["blocks"]) > 0, "Expected at least one block in Slack payload"
|
| 234 |
+
|
| 235 |
+
print(f"\n✓ Slack Message Generated Successfully")
|
| 236 |
+
print(f" - Total blocks: {len(slack_payload['blocks'])}")
|
| 237 |
+
print(f"\n📧 Full Slack Message Payload:")
|
| 238 |
+
print("=" * 80)
|
| 239 |
+
print(json.dumps(slack_payload, indent=2))
|
| 240 |
+
print("=" * 80)
|
| 241 |
+
|
| 242 |
+
print("\n✅ TEST 5 PASSED: Slack message generation works correctly")
|
| 243 |
+
return True
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def test_edge_cases():
|
| 247 |
+
"""Test edge cases"""
|
| 248 |
+
print("\n" + "="*80)
|
| 249 |
+
print("TEST 6: Edge Cases")
|
| 250 |
+
print("="*80)
|
| 251 |
+
|
| 252 |
+
# Test with single data point (should not trigger any regressions - no historical comparison)
|
| 253 |
+
single_current = [
|
| 254 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 100.0, "tokens_per_second": 500.0},
|
| 255 |
+
]
|
| 256 |
+
empty_historical = []
|
| 257 |
+
|
| 258 |
+
device_regressions = detect_device_regressions(single_current, empty_historical, threshold=20.0)
|
| 259 |
+
assert len(device_regressions) == 0, f"Expected 0 regressions with no historical data, got {len(device_regressions)}"
|
| 260 |
+
print("✓ Single data point with no historical data handled correctly (no regressions)")
|
| 261 |
+
|
| 262 |
+
# Test with empty current data
|
| 263 |
+
empty_regressions = detect_device_regressions([], single_current, threshold=20.0)
|
| 264 |
+
assert len(empty_regressions) == 0, "Expected 0 regressions with empty current data"
|
| 265 |
+
print("✓ Empty current data handled correctly")
|
| 266 |
+
|
| 267 |
+
# Test with missing fields (tokens_per_second missing)
|
| 268 |
+
partial_historical = [
|
| 269 |
+
{"model": "model-a", "device": "iPhone 15", "os": "iOS 18", "average_wer": 10.0, "speed": 100.0},
|
| 270 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 10.5, "speed": 95.0},
|
| 271 |
+
]
|
| 272 |
+
partial_current = [
|
| 273 |
+
{"model": "model-a", "device": "iPad Pro", "os": "iOS 18", "average_wer": 30.0, "speed": 80.0},
|
| 274 |
+
]
|
| 275 |
+
|
| 276 |
+
# Should still work for WER and speed
|
| 277 |
+
device_regressions = detect_device_regressions(partial_current, partial_historical, threshold=20.0)
|
| 278 |
+
print(f"✓ Partial data (missing tokens) handled correctly: {len(device_regressions)} WER regressions found")
|
| 279 |
+
|
| 280 |
+
# Should not crash for tokens
|
| 281 |
+
tokens_regressions = detect_tokens_device_regressions(partial_current, partial_historical, threshold=20.0)
|
| 282 |
+
assert len(tokens_regressions) == 0, "Expected 0 tokens regressions when field is missing"
|
| 283 |
+
print("✓ Missing tokens_per_second field handled gracefully")
|
| 284 |
+
|
| 285 |
+
print("\n✅ TEST 6 PASSED: Edge cases handled correctly")
|
| 286 |
+
return True
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def test_with_real_data_sample():
|
| 290 |
+
"""Test with a small sample of real data to verify calculations"""
|
| 291 |
+
print("\n" + "="*80)
|
| 292 |
+
print("TEST 7: Real Data Sample Verification")
|
| 293 |
+
print("="*80)
|
| 294 |
+
|
| 295 |
+
try:
|
| 296 |
+
# Load a sample of real data
|
| 297 |
+
real_data = load_performance_data("dashboard_data/performance_data.json")
|
| 298 |
+
|
| 299 |
+
if len(real_data) == 0:
|
| 300 |
+
print("⚠️ No real data found, skipping this test")
|
| 301 |
+
return True
|
| 302 |
+
|
| 303 |
+
print(f"✓ Loaded {len(real_data)} real data points")
|
| 304 |
+
|
| 305 |
+
# Get unique models
|
| 306 |
+
models = set(entry["model"] for entry in real_data)
|
| 307 |
+
print(f"✓ Found {len(models)} unique models")
|
| 308 |
+
|
| 309 |
+
# Split into current (last 10%) and historical (all data) for testing
|
| 310 |
+
split_point = int(len(real_data) * 0.9)
|
| 311 |
+
historical_data = real_data[:split_point] if split_point > 0 else real_data
|
| 312 |
+
current_data = real_data[split_point:] if split_point > 0 else real_data[:10]
|
| 313 |
+
|
| 314 |
+
# Run detection on real data
|
| 315 |
+
device_regressions = detect_device_regressions(current_data, historical_data, threshold=20.0)
|
| 316 |
+
os_regressions = detect_os_regressions(current_data, historical_data, threshold=20.0)
|
| 317 |
+
speed_device_regressions = detect_speed_device_regressions(current_data, historical_data, threshold=20.0)
|
| 318 |
+
tokens_device_regressions = detect_tokens_device_regressions(current_data, historical_data, threshold=20.0)
|
| 319 |
+
|
| 320 |
+
print(f"\n✓ Real Data Analysis:")
|
| 321 |
+
print(f" - WER device regressions: {len(device_regressions)}")
|
| 322 |
+
print(f" - WER OS regressions: {len(os_regressions)}")
|
| 323 |
+
print(f" - Speed device regressions: {len(speed_device_regressions)}")
|
| 324 |
+
print(f" - Tokens device regressions: {len(tokens_device_regressions)}")
|
| 325 |
+
|
| 326 |
+
# Show a few examples if any found
|
| 327 |
+
if device_regressions:
|
| 328 |
+
print(f"\n Example WER regression:")
|
| 329 |
+
r = device_regressions[0]
|
| 330 |
+
print(f" Model: {r['model']}")
|
| 331 |
+
print(f" Device: {r['device']} on {r['os']}")
|
| 332 |
+
print(f" Current: {r['current_value']}% WER")
|
| 333 |
+
print(f" Historical best: {r['best_value']}% WER")
|
| 334 |
+
print(f" Deviation: +{r['percentage_diff']}%")
|
| 335 |
+
|
| 336 |
+
if speed_device_regressions:
|
| 337 |
+
print(f"\n Example Speed regression:")
|
| 338 |
+
r = speed_device_regressions[0]
|
| 339 |
+
print(f" Model: {r['model']}")
|
| 340 |
+
print(f" Device: {r['device']} on {r['os']}")
|
| 341 |
+
print(f" Current: {r['current_value']}x speed")
|
| 342 |
+
print(f" Historical best: {r['best_value']}x speed")
|
| 343 |
+
print(f" Slower by: {r['percentage_diff']}%")
|
| 344 |
+
|
| 345 |
+
print("\n✅ TEST 7 PASSED: Real data processed successfully")
|
| 346 |
+
return True
|
| 347 |
+
|
| 348 |
+
except FileNotFoundError:
|
| 349 |
+
print("⚠️ dashboard_data/performance_data.json not found, skipping real data test")
|
| 350 |
+
return True
|
| 351 |
+
except Exception as e:
|
| 352 |
+
print(f"❌ Error processing real data: {e}")
|
| 353 |
+
return False
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
def manual_verification_helper():
|
| 357 |
+
"""Print data for manual verification"""
|
| 358 |
+
print("\n" + "="*80)
|
| 359 |
+
print("MANUAL VERIFICATION HELPER")
|
| 360 |
+
print("="*80)
|
| 361 |
+
|
| 362 |
+
try:
|
| 363 |
+
real_data = load_performance_data("dashboard_data/performance_data.json")
|
| 364 |
+
|
| 365 |
+
# Pick a model to analyze in detail
|
| 366 |
+
models = {}
|
| 367 |
+
for entry in real_data:
|
| 368 |
+
model = entry["model"]
|
| 369 |
+
if model not in models:
|
| 370 |
+
models[model] = []
|
| 371 |
+
models[model].append(entry)
|
| 372 |
+
|
| 373 |
+
# Find a model with multiple entries
|
| 374 |
+
for model_name, entries in list(models.items())[:3]: # Check first 3 models
|
| 375 |
+
if len(entries) >= 3:
|
| 376 |
+
print(f"\n📊 Model: {model_name}")
|
| 377 |
+
print(f" Total data points: {len(entries)}")
|
| 378 |
+
|
| 379 |
+
# Show WER stats
|
| 380 |
+
wer_values = [e["average_wer"] for e in entries]
|
| 381 |
+
print(f"\n WER Analysis:")
|
| 382 |
+
print(f" - Best (min): {min(wer_values):.2f}%")
|
| 383 |
+
print(f" - Worst (max): {max(wer_values):.2f}%")
|
| 384 |
+
print(f" - Difference: {((max(wer_values) - min(wer_values)) / min(wer_values) * 100):.1f}%")
|
| 385 |
+
|
| 386 |
+
# Show by device
|
| 387 |
+
devices = {}
|
| 388 |
+
for entry in entries:
|
| 389 |
+
device = entry["device"]
|
| 390 |
+
if device not in devices:
|
| 391 |
+
devices[device] = []
|
| 392 |
+
devices[device].append(entry["average_wer"])
|
| 393 |
+
|
| 394 |
+
print(f"\n WER by Device:")
|
| 395 |
+
for device, wers in devices.items():
|
| 396 |
+
avg_wer = sum(wers) / len(wers)
|
| 397 |
+
num_samples = len(wers)
|
| 398 |
+
print(f" - {device}: {avg_wer:.2f}% avg ({num_samples} test runs)")
|
| 399 |
+
|
| 400 |
+
# Show speed stats if available
|
| 401 |
+
if "speed" in entries[0]:
|
| 402 |
+
speed_values = [e["speed"] for e in entries]
|
| 403 |
+
print(f"\n Speed Analysis:")
|
| 404 |
+
print(f" - Best (max): {max(speed_values):.2f}x")
|
| 405 |
+
print(f" - Worst (min): {min(speed_values):.2f}x")
|
| 406 |
+
print(f" - Difference: {((max(speed_values) - min(speed_values)) / max(speed_values) * 100):.1f}%")
|
| 407 |
+
|
| 408 |
+
break
|
| 409 |
+
|
| 410 |
+
print("\n" + "="*80)
|
| 411 |
+
print("Use the above data to manually verify regression detection logic")
|
| 412 |
+
print("="*80)
|
| 413 |
+
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print(f"Could not load data for manual verification: {e}")
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def run_all_tests():
|
| 419 |
+
"""Run all tests"""
|
| 420 |
+
print("\n" + "="*80)
|
| 421 |
+
print("🧪 RUNNING ALL REGRESSION DETECTION TESTS")
|
| 422 |
+
print("="*80)
|
| 423 |
+
|
| 424 |
+
tests = [
|
| 425 |
+
("WER Detection (Synthetic)", test_wer_detection_with_synthetic_data),
|
| 426 |
+
("Speed Detection (Synthetic)", test_speed_detection_with_synthetic_data),
|
| 427 |
+
("Tokens Detection (Synthetic)", test_tokens_detection_with_synthetic_data),
|
| 428 |
+
("Release Regression Detection", test_release_regression_detection),
|
| 429 |
+
("Slack Message Generation", test_slack_message_generation),
|
| 430 |
+
("Edge Cases", test_edge_cases),
|
| 431 |
+
("Real Data Sample", test_with_real_data_sample),
|
| 432 |
+
]
|
| 433 |
+
|
| 434 |
+
passed = 0
|
| 435 |
+
failed = 0
|
| 436 |
+
|
| 437 |
+
for test_name, test_func in tests:
|
| 438 |
+
try:
|
| 439 |
+
if test_func():
|
| 440 |
+
passed += 1
|
| 441 |
+
else:
|
| 442 |
+
failed += 1
|
| 443 |
+
print(f"\n❌ {test_name} FAILED")
|
| 444 |
+
except AssertionError as e:
|
| 445 |
+
failed += 1
|
| 446 |
+
print(f"\n❌ {test_name} FAILED: {e}")
|
| 447 |
+
except Exception as e:
|
| 448 |
+
failed += 1
|
| 449 |
+
print(f"\n❌ {test_name} ERROR: {e}")
|
| 450 |
+
import traceback
|
| 451 |
+
traceback.print_exc()
|
| 452 |
+
|
| 453 |
+
# Print summary
|
| 454 |
+
print("\n" + "="*80)
|
| 455 |
+
print("TEST SUMMARY")
|
| 456 |
+
print("="*80)
|
| 457 |
+
print(f"✅ Passed: {passed}/{len(tests)}")
|
| 458 |
+
print(f"❌ Failed: {failed}/{len(tests)}")
|
| 459 |
+
|
| 460 |
+
if failed == 0:
|
| 461 |
+
print("\n🎉 ALL TESTS PASSED! The implementation is working correctly.")
|
| 462 |
+
print("\nNext steps:")
|
| 463 |
+
print("1. Run manual verification helper to spot-check real data")
|
| 464 |
+
print("2. Test in a non-production environment first")
|
| 465 |
+
print("3. Monitor the first few runs carefully")
|
| 466 |
+
else:
|
| 467 |
+
print(f"\n⚠️ {failed} test(s) failed. Please review and fix issues.")
|
| 468 |
+
return False
|
| 469 |
+
|
| 470 |
+
return True
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
if __name__ == "__main__":
|
| 474 |
+
success = run_all_tests()
|
| 475 |
+
|
| 476 |
+
# Optionally run manual verification helper
|
| 477 |
+
print("\n" + "="*80)
|
| 478 |
+
response = input("Run manual verification helper? (y/n): ")
|
| 479 |
+
if response.lower() == 'y':
|
| 480 |
+
manual_verification_helper()
|
| 481 |
+
|
| 482 |
+
sys.exit(0 if success else 1)
|
| 483 |
+
|
.github/scripts/wer_regression_check.py
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
WhisperKit
|
| 4 |
|
| 5 |
-
This script detects significant
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
|
|
|
| 9 |
|
| 10 |
-
If any model shows
|
| 11 |
"""
|
| 12 |
|
| 13 |
import json
|
|
@@ -51,166 +52,516 @@ def calculate_wer_statistics(wer_values: List[float]) -> Dict[str, float]:
|
|
| 51 |
}
|
| 52 |
|
| 53 |
|
| 54 |
-
def detect_device_regressions(
|
| 55 |
"""
|
| 56 |
-
Detect WER regressions
|
|
|
|
| 57 |
Returns list of regression alerts.
|
| 58 |
"""
|
| 59 |
regressions = []
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
for entry in entries:
|
| 74 |
-
device_wer[entry["device"]].append(entry["average_wer"])
|
| 75 |
-
|
| 76 |
-
# Calculate statistics for each device
|
| 77 |
-
device_stats = {}
|
| 78 |
-
for device, wer_values in device_wer.items():
|
| 79 |
-
device_stats[device] = calculate_wer_statistics(wer_values)
|
| 80 |
-
|
| 81 |
-
# Find significant discrepancies between devices
|
| 82 |
-
devices = list(device_stats.keys())
|
| 83 |
-
for i in range(len(devices)):
|
| 84 |
-
for j in range(i + 1, len(devices)):
|
| 85 |
-
device_1, device_2 = devices[i], devices[j]
|
| 86 |
-
mean_1 = device_stats[device_1]["mean"]
|
| 87 |
-
mean_2 = device_stats[device_2]["mean"]
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
if
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
})
|
| 104 |
|
| 105 |
return regressions
|
| 106 |
|
| 107 |
|
| 108 |
-
def
|
| 109 |
"""
|
| 110 |
-
Detect
|
|
|
|
| 111 |
Returns list of regression alerts.
|
| 112 |
"""
|
| 113 |
regressions = []
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
continue
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
"device": device,
|
| 152 |
-
"os_1": os_1,
|
| 153 |
-
"os_2": os_2,
|
| 154 |
-
"wer_1": round(mean_1, 2),
|
| 155 |
-
"wer_2": round(mean_2, 2),
|
| 156 |
-
"percentage_diff": round(pct_diff, 1)
|
| 157 |
-
})
|
| 158 |
|
| 159 |
return regressions
|
| 160 |
|
| 161 |
|
| 162 |
-
def
|
| 163 |
-
|
| 164 |
"""
|
| 165 |
-
Detect
|
|
|
|
| 166 |
Returns list of regression alerts.
|
| 167 |
"""
|
| 168 |
regressions = []
|
| 169 |
|
| 170 |
if not previous_data:
|
| 171 |
-
print("No previous release data available for comparison")
|
| 172 |
return regressions
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
for entry in current_data:
|
| 179 |
-
|
| 180 |
-
|
| 181 |
|
| 182 |
for entry in previous_data:
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
for
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
# Only flag
|
| 198 |
-
if
|
| 199 |
regressions.append({
|
| 200 |
-
"type": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
"model": model,
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
| 207 |
})
|
| 208 |
|
| 209 |
return regressions
|
| 210 |
|
| 211 |
|
| 212 |
def generate_slack_message(regressions: List[Dict]) -> Dict:
|
| 213 |
-
"""Generate Slack message payload for
|
| 214 |
|
| 215 |
if not regressions:
|
| 216 |
return None
|
|
@@ -220,7 +571,7 @@ def generate_slack_message(regressions: List[Dict]) -> Dict:
|
|
| 220 |
"type": "header",
|
| 221 |
"text": {
|
| 222 |
"type": "plain_text",
|
| 223 |
-
"text": "WhisperKit
|
| 224 |
"emoji": True
|
| 225 |
}
|
| 226 |
},
|
|
@@ -229,7 +580,7 @@ def generate_slack_message(regressions: List[Dict]) -> Dict:
|
|
| 229 |
"elements": [
|
| 230 |
{
|
| 231 |
"type": "mrkdwn",
|
| 232 |
-
"text": f"*Detected {len(regressions)} significant
|
| 233 |
}
|
| 234 |
]
|
| 235 |
},
|
|
@@ -237,84 +588,239 @@ def generate_slack_message(regressions: List[Dict]) -> Dict:
|
|
| 237 |
]
|
| 238 |
|
| 239 |
# Group regressions by type
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
blocks.append({
|
| 246 |
"type": "section",
|
| 247 |
"text": {
|
| 248 |
"type": "mrkdwn",
|
| 249 |
-
"text": "*Device Discrepancies:*"
|
| 250 |
}
|
| 251 |
})
|
| 252 |
|
| 253 |
-
for regression in
|
| 254 |
blocks.append({
|
| 255 |
"type": "section",
|
| 256 |
"text": {
|
| 257 |
"type": "mrkdwn",
|
| 258 |
-
"text": f"*{regression['model']}
|
| 259 |
-
f"• {regression['
|
| 260 |
-
f"• {regression['
|
| 261 |
-
f"•
|
| 262 |
}
|
| 263 |
})
|
| 264 |
|
| 265 |
-
if
|
| 266 |
-
if
|
| 267 |
blocks.append({"type": "divider"})
|
| 268 |
|
| 269 |
blocks.append({
|
| 270 |
"type": "section",
|
| 271 |
"text": {
|
| 272 |
"type": "mrkdwn",
|
| 273 |
-
"text": "*OS Version Discrepancies:*"
|
| 274 |
}
|
| 275 |
})
|
| 276 |
|
| 277 |
-
for regression in
|
| 278 |
blocks.append({
|
| 279 |
"type": "section",
|
| 280 |
"text": {
|
| 281 |
"type": "mrkdwn",
|
| 282 |
-
"text": f"*{regression['model']}
|
| 283 |
-
f"• {regression['
|
| 284 |
-
f"• {regression['
|
| 285 |
-
f"•
|
| 286 |
}
|
| 287 |
})
|
| 288 |
|
| 289 |
-
if
|
| 290 |
-
if
|
| 291 |
blocks.append({"type": "divider"})
|
| 292 |
|
| 293 |
blocks.append({
|
| 294 |
"type": "section",
|
| 295 |
"text": {
|
| 296 |
"type": "mrkdwn",
|
| 297 |
-
"text": "*Release-to-Release Regressions:*"
|
| 298 |
}
|
| 299 |
})
|
| 300 |
|
| 301 |
-
for regression in
|
| 302 |
blocks.append({
|
| 303 |
"type": "section",
|
| 304 |
"text": {
|
| 305 |
"type": "mrkdwn",
|
| 306 |
"text": f"*{regression['model']}* on {regression['device']} ({regression['os']})\n"
|
| 307 |
-
f"•
|
| 308 |
-
f"•
|
| 309 |
f"• Increase: +{regression['percentage_increase']}%"
|
| 310 |
}
|
| 311 |
})
|
| 312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
return {"blocks": blocks}
|
| 314 |
|
| 315 |
|
| 316 |
-
def
|
| 317 |
-
"""Main function to check for
|
| 318 |
|
| 319 |
# Load version data to get commit hashes
|
| 320 |
try:
|
|
@@ -333,7 +839,7 @@ def check_wer_regressions():
|
|
| 333 |
current_commit = releases[-1] if releases else None
|
| 334 |
previous_commit = releases[-2] if len(releases) >= 2 else None
|
| 335 |
|
| 336 |
-
print(f"Checking
|
| 337 |
if previous_commit:
|
| 338 |
print(f"Comparing against previous commit: {previous_commit}")
|
| 339 |
|
|
@@ -347,43 +853,70 @@ def check_wer_regressions():
|
|
| 347 |
|
| 348 |
all_regressions = []
|
| 349 |
|
| 350 |
-
#
|
| 351 |
-
|
|
|
|
| 352 |
all_regressions.extend(device_regressions)
|
| 353 |
-
print(f"Found {len(device_regressions)} device discrepancies
|
| 354 |
|
| 355 |
-
|
| 356 |
-
os_regressions = detect_os_regressions(all_historical_data, threshold=20.0)
|
| 357 |
all_regressions.extend(os_regressions)
|
| 358 |
-
print(f"Found {len(os_regressions)} OS discrepancies
|
| 359 |
|
| 360 |
-
# Check for release-to-release regressions
|
| 361 |
release_regressions = detect_release_regressions(current_data, previous_data, threshold=20.0)
|
| 362 |
all_regressions.extend(release_regressions)
|
| 363 |
-
print(f"Found {len(release_regressions)} release regressions")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
# Generate outputs
|
| 366 |
github_output = os.getenv("GITHUB_OUTPUT")
|
| 367 |
if github_output:
|
| 368 |
with open(github_output, "a") as f:
|
| 369 |
-
print(f"
|
| 370 |
-
print(f"
|
| 371 |
|
| 372 |
if all_regressions:
|
| 373 |
slack_payload = generate_slack_message(all_regressions)
|
| 374 |
if slack_payload:
|
| 375 |
-
f.write("
|
| 376 |
json.dump(slack_payload, f, indent=2)
|
| 377 |
f.write("\nEOF\n")
|
| 378 |
|
| 379 |
# Print summary for debugging
|
| 380 |
if all_regressions:
|
| 381 |
-
print(f"\
|
| 382 |
for regression in all_regressions:
|
| 383 |
print(f" - {regression['type']}: {regression.get('model', 'N/A')}")
|
| 384 |
else:
|
| 385 |
-
print("No significant
|
| 386 |
|
| 387 |
|
| 388 |
if __name__ == "__main__":
|
| 389 |
-
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
WhisperKit Performance Regression Detection Script
|
| 4 |
|
| 5 |
+
This script detects significant performance regressions per model by:
|
| 6 |
+
- Tracking the best (lowest) WER for each model
|
| 7 |
+
- Tracking the best (highest) speed and tokens per second for each model
|
| 8 |
+
- Comparing all configurations against those best baselines
|
| 9 |
+
- Alerting if any configuration deviates by > 20%
|
| 10 |
|
| 11 |
+
If any model shows discrepancy > 20%, it alerts via Slack.
|
| 12 |
"""
|
| 13 |
|
| 14 |
import json
|
|
|
|
| 52 |
}
|
| 53 |
|
| 54 |
|
| 55 |
+
def detect_device_regressions(current_data: List[Dict], all_historical_data: List[Dict], threshold: float = 20.0) -> List[Dict]:
|
| 56 |
"""
|
| 57 |
+
Detect WER regressions for devices in current release.
|
| 58 |
+
Compares current data points against historical best for each model+device combination.
|
| 59 |
Returns list of regression alerts.
|
| 60 |
"""
|
| 61 |
regressions = []
|
| 62 |
|
| 63 |
+
# Build historical best WER for each model+device combination
|
| 64 |
+
historical_best = {}
|
| 65 |
+
best_configs = {}
|
| 66 |
+
for entry in all_historical_data:
|
| 67 |
+
key = (entry["model"], entry["device"])
|
| 68 |
+
if key not in historical_best:
|
| 69 |
+
historical_best[key] = entry["average_wer"]
|
| 70 |
+
best_configs[key] = entry
|
| 71 |
+
elif entry["average_wer"] < historical_best[key]:
|
| 72 |
+
historical_best[key] = entry["average_wer"]
|
| 73 |
+
best_configs[key] = entry
|
| 74 |
+
|
| 75 |
+
# Check each current data point against historical best
|
| 76 |
+
for entry in current_data:
|
| 77 |
+
key = (entry["model"], entry["device"])
|
| 78 |
+
|
| 79 |
+
if key not in historical_best:
|
| 80 |
+
continue # No historical data for this combination
|
| 81 |
+
|
| 82 |
+
best_wer = historical_best[key]
|
| 83 |
+
best_config = best_configs[key]
|
| 84 |
+
current_wer = entry["average_wer"]
|
| 85 |
+
|
| 86 |
+
if best_wer > 0: # Avoid division by zero
|
| 87 |
+
pct_diff = (current_wer - best_wer) / best_wer * 100
|
| 88 |
+
|
| 89 |
+
# Only flag if current is significantly worse than historical best
|
| 90 |
+
if pct_diff > threshold:
|
| 91 |
+
regressions.append({
|
| 92 |
+
"type": "device_wer_discrepancy",
|
| 93 |
+
"metric": "WER",
|
| 94 |
+
"model": entry["model"],
|
| 95 |
+
"device": entry["device"],
|
| 96 |
+
"os": entry["os"],
|
| 97 |
+
"current_value": round(current_wer, 2),
|
| 98 |
+
"best_value": round(best_wer, 2),
|
| 99 |
+
"best_device": best_config["device"],
|
| 100 |
+
"best_os": best_config["os"],
|
| 101 |
+
"percentage_diff": round(pct_diff, 1)
|
| 102 |
+
})
|
| 103 |
|
| 104 |
+
return regressions
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def detect_os_regressions(current_data: List[Dict], all_historical_data: List[Dict], threshold: float = 20.0) -> List[Dict]:
|
| 108 |
+
"""
|
| 109 |
+
Detect WER regressions for OS versions in current release.
|
| 110 |
+
Compares current data points against historical best for each model+OS combination.
|
| 111 |
+
Returns list of regression alerts.
|
| 112 |
+
"""
|
| 113 |
+
regressions = []
|
| 114 |
+
|
| 115 |
+
# Build historical best WER for each model+OS combination
|
| 116 |
+
historical_best = {}
|
| 117 |
+
best_configs = {}
|
| 118 |
+
for entry in all_historical_data:
|
| 119 |
+
key = (entry["model"], entry["os"])
|
| 120 |
+
if key not in historical_best:
|
| 121 |
+
historical_best[key] = entry["average_wer"]
|
| 122 |
+
best_configs[key] = entry
|
| 123 |
+
elif entry["average_wer"] < historical_best[key]:
|
| 124 |
+
historical_best[key] = entry["average_wer"]
|
| 125 |
+
best_configs[key] = entry
|
| 126 |
+
|
| 127 |
+
# Check each current data point against historical best
|
| 128 |
+
for entry in current_data:
|
| 129 |
+
key = (entry["model"], entry["os"])
|
| 130 |
+
|
| 131 |
+
if key not in historical_best:
|
| 132 |
+
continue # No historical data for this combination
|
| 133 |
+
|
| 134 |
+
best_wer = historical_best[key]
|
| 135 |
+
best_config = best_configs[key]
|
| 136 |
+
current_wer = entry["average_wer"]
|
| 137 |
+
|
| 138 |
+
if best_wer > 0: # Avoid division by zero
|
| 139 |
+
pct_diff = (current_wer - best_wer) / best_wer * 100
|
| 140 |
+
|
| 141 |
+
# Only flag if current is significantly worse than historical best
|
| 142 |
+
if pct_diff > threshold:
|
| 143 |
+
regressions.append({
|
| 144 |
+
"type": "os_wer_discrepancy",
|
| 145 |
+
"metric": "WER",
|
| 146 |
+
"model": entry["model"],
|
| 147 |
+
"device": entry["device"],
|
| 148 |
+
"os": entry["os"],
|
| 149 |
+
"current_value": round(current_wer, 2),
|
| 150 |
+
"best_value": round(best_wer, 2),
|
| 151 |
+
"best_device": best_config["device"],
|
| 152 |
+
"best_os": best_config["os"],
|
| 153 |
+
"percentage_diff": round(pct_diff, 1)
|
| 154 |
+
})
|
| 155 |
+
|
| 156 |
+
return regressions
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def detect_release_regressions(current_data: List[Dict], previous_data: List[Dict],
|
| 160 |
+
threshold: float = 20.0) -> List[Dict]:
|
| 161 |
+
"""
|
| 162 |
+
Detect WER regressions in current release for each model.
|
| 163 |
+
Compares current WER against the best (lowest) historical WER for that model.
|
| 164 |
+
Returns list of regression alerts.
|
| 165 |
+
"""
|
| 166 |
+
regressions = []
|
| 167 |
+
|
| 168 |
+
if not previous_data:
|
| 169 |
+
print("No previous release data available for comparison")
|
| 170 |
+
return regressions
|
| 171 |
+
|
| 172 |
+
# Combine all historical data
|
| 173 |
+
all_historical = previous_data
|
| 174 |
+
|
| 175 |
+
# Group by model
|
| 176 |
+
model_current = defaultdict(list)
|
| 177 |
+
model_historical = defaultdict(list)
|
| 178 |
+
|
| 179 |
+
for entry in current_data:
|
| 180 |
+
model_current[entry["model"]].append(entry)
|
| 181 |
+
|
| 182 |
+
for entry in all_historical:
|
| 183 |
+
model_historical[entry["model"]].append(entry)
|
| 184 |
+
|
| 185 |
+
# Check each model
|
| 186 |
+
for model in model_current.keys():
|
| 187 |
+
if model not in model_historical:
|
| 188 |
+
continue # No historical data for this model
|
| 189 |
+
|
| 190 |
+
# Find best historical WER for this model
|
| 191 |
+
best_historical_wer = min(entry["average_wer"] for entry in model_historical[model])
|
| 192 |
+
best_config = next(e for e in model_historical[model] if e["average_wer"] == best_historical_wer)
|
| 193 |
+
|
| 194 |
+
# Check each current configuration against best historical
|
| 195 |
+
for current_entry in model_current[model]:
|
| 196 |
+
current_wer = current_entry["average_wer"]
|
| 197 |
|
| 198 |
+
if best_historical_wer > 0: # Avoid division by zero
|
| 199 |
+
pct_change = (current_wer - best_historical_wer) / best_historical_wer * 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
# Only flag significant WER increases (regressions)
|
| 202 |
+
if pct_change > threshold:
|
| 203 |
+
regressions.append({
|
| 204 |
+
"type": "release_wer_regression",
|
| 205 |
+
"metric": "WER",
|
| 206 |
+
"model": model,
|
| 207 |
+
"device": current_entry["device"],
|
| 208 |
+
"os": current_entry["os"],
|
| 209 |
+
"current_value": round(current_wer, 2),
|
| 210 |
+
"best_historical_value": round(best_historical_wer, 2),
|
| 211 |
+
"best_device": best_config["device"],
|
| 212 |
+
"best_os": best_config["os"],
|
| 213 |
+
"percentage_increase": round(pct_change, 1)
|
| 214 |
+
})
|
|
|
|
| 215 |
|
| 216 |
return regressions
|
| 217 |
|
| 218 |
|
| 219 |
+
def detect_speed_device_regressions(current_data: List[Dict], all_historical_data: List[Dict], threshold: float = 20.0) -> List[Dict]:
|
| 220 |
"""
|
| 221 |
+
Detect speed regressions for devices in current release.
|
| 222 |
+
Compares current data points against historical best for each model+device combination.
|
| 223 |
Returns list of regression alerts.
|
| 224 |
"""
|
| 225 |
regressions = []
|
| 226 |
|
| 227 |
+
# Build historical best speed for each model+device combination
|
| 228 |
+
historical_best = {}
|
| 229 |
+
best_configs = {}
|
| 230 |
+
for entry in all_historical_data:
|
| 231 |
+
if "speed" not in entry:
|
| 232 |
+
continue
|
| 233 |
+
key = (entry["model"], entry["device"])
|
| 234 |
+
if key not in historical_best:
|
| 235 |
+
historical_best[key] = entry["speed"]
|
| 236 |
+
best_configs[key] = entry
|
| 237 |
+
elif entry["speed"] > historical_best[key]:
|
| 238 |
+
historical_best[key] = entry["speed"]
|
| 239 |
+
best_configs[key] = entry
|
| 240 |
+
|
| 241 |
+
# Check each current data point against historical best
|
| 242 |
+
for entry in current_data:
|
| 243 |
+
if "speed" not in entry:
|
| 244 |
+
continue
|
| 245 |
+
|
| 246 |
+
key = (entry["model"], entry["device"])
|
| 247 |
+
|
| 248 |
+
if key not in historical_best:
|
| 249 |
+
continue # No historical data for this combination
|
| 250 |
+
|
| 251 |
+
best_speed = historical_best[key]
|
| 252 |
+
best_config = best_configs[key]
|
| 253 |
+
current_speed = entry["speed"]
|
| 254 |
+
|
| 255 |
+
if best_speed > 0: # Avoid division by zero
|
| 256 |
+
pct_diff = (best_speed - current_speed) / best_speed * 100
|
| 257 |
+
|
| 258 |
+
# Only flag if current is significantly slower than historical best
|
| 259 |
+
if pct_diff > threshold:
|
| 260 |
+
regressions.append({
|
| 261 |
+
"type": "device_speed_discrepancy",
|
| 262 |
+
"metric": "Speed",
|
| 263 |
+
"model": entry["model"],
|
| 264 |
+
"device": entry["device"],
|
| 265 |
+
"os": entry["os"],
|
| 266 |
+
"current_value": round(current_speed, 2),
|
| 267 |
+
"best_value": round(best_speed, 2),
|
| 268 |
+
"best_device": best_config["device"],
|
| 269 |
+
"best_os": best_config["os"],
|
| 270 |
+
"percentage_diff": round(pct_diff, 1)
|
| 271 |
+
})
|
| 272 |
+
|
| 273 |
+
return regressions
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def detect_speed_os_regressions(current_data: List[Dict], all_historical_data: List[Dict], threshold: float = 20.0) -> List[Dict]:
|
| 277 |
+
"""
|
| 278 |
+
Detect speed regressions for OS versions in current release.
|
| 279 |
+
Compares current data points against historical best for each model+OS combination.
|
| 280 |
+
Returns list of regression alerts.
|
| 281 |
+
"""
|
| 282 |
+
regressions = []
|
| 283 |
|
| 284 |
+
# Build historical best speed for each model+OS combination
|
| 285 |
+
historical_best = {}
|
| 286 |
+
best_configs = {}
|
| 287 |
+
for entry in all_historical_data:
|
| 288 |
+
if "speed" not in entry:
|
| 289 |
+
continue
|
| 290 |
+
key = (entry["model"], entry["os"])
|
| 291 |
+
if key not in historical_best:
|
| 292 |
+
historical_best[key] = entry["speed"]
|
| 293 |
+
best_configs[key] = entry
|
| 294 |
+
elif entry["speed"] > historical_best[key]:
|
| 295 |
+
historical_best[key] = entry["speed"]
|
| 296 |
+
best_configs[key] = entry
|
| 297 |
+
|
| 298 |
+
# Check each current data point against historical best
|
| 299 |
+
for entry in current_data:
|
| 300 |
+
if "speed" not in entry:
|
| 301 |
continue
|
| 302 |
|
| 303 |
+
key = (entry["model"], entry["os"])
|
| 304 |
+
|
| 305 |
+
if key not in historical_best:
|
| 306 |
+
continue # No historical data for this combination
|
| 307 |
+
|
| 308 |
+
best_speed = historical_best[key]
|
| 309 |
+
best_config = best_configs[key]
|
| 310 |
+
current_speed = entry["speed"]
|
| 311 |
+
|
| 312 |
+
if best_speed > 0: # Avoid division by zero
|
| 313 |
+
pct_diff = (best_speed - current_speed) / best_speed * 100
|
| 314 |
+
|
| 315 |
+
# Only flag if current is significantly slower than historical best
|
| 316 |
+
if pct_diff > threshold:
|
| 317 |
+
regressions.append({
|
| 318 |
+
"type": "os_speed_discrepancy",
|
| 319 |
+
"metric": "Speed",
|
| 320 |
+
"model": entry["model"],
|
| 321 |
+
"device": entry["device"],
|
| 322 |
+
"os": entry["os"],
|
| 323 |
+
"current_value": round(current_speed, 2),
|
| 324 |
+
"best_value": round(best_speed, 2),
|
| 325 |
+
"best_device": best_config["device"],
|
| 326 |
+
"best_os": best_config["os"],
|
| 327 |
+
"percentage_diff": round(pct_diff, 1)
|
| 328 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
return regressions
|
| 331 |
|
| 332 |
|
| 333 |
+
def detect_speed_release_regressions(current_data: List[Dict], previous_data: List[Dict],
|
| 334 |
+
threshold: float = 20.0) -> List[Dict]:
|
| 335 |
"""
|
| 336 |
+
Detect speed regressions in current release for each model.
|
| 337 |
+
Compares current speed against the best (highest) historical speed for that model.
|
| 338 |
Returns list of regression alerts.
|
| 339 |
"""
|
| 340 |
regressions = []
|
| 341 |
|
| 342 |
if not previous_data:
|
|
|
|
| 343 |
return regressions
|
| 344 |
|
| 345 |
+
# Group by model
|
| 346 |
+
model_current = defaultdict(list)
|
| 347 |
+
model_historical = defaultdict(list)
|
| 348 |
|
| 349 |
for entry in current_data:
|
| 350 |
+
if "speed" in entry:
|
| 351 |
+
model_current[entry["model"]].append(entry)
|
| 352 |
|
| 353 |
for entry in previous_data:
|
| 354 |
+
if "speed" in entry:
|
| 355 |
+
model_historical[entry["model"]].append(entry)
|
| 356 |
+
|
| 357 |
+
# Check each model
|
| 358 |
+
for model in model_current.keys():
|
| 359 |
+
if model not in model_historical:
|
| 360 |
+
continue # No historical data for this model
|
| 361 |
+
|
| 362 |
+
# Find best historical speed for this model
|
| 363 |
+
best_historical_speed = max(entry["speed"] for entry in model_historical[model])
|
| 364 |
+
best_config = next(e for e in model_historical[model] if e["speed"] == best_historical_speed)
|
| 365 |
+
|
| 366 |
+
# Check each current configuration against best historical
|
| 367 |
+
for current_entry in model_current[model]:
|
| 368 |
+
current_speed = current_entry["speed"]
|
| 369 |
+
|
| 370 |
+
if best_historical_speed > 0: # Avoid division by zero
|
| 371 |
+
pct_change = (best_historical_speed - current_speed) / best_historical_speed * 100
|
| 372 |
+
|
| 373 |
+
# Only flag significant speed decreases (regressions)
|
| 374 |
+
if pct_change > threshold:
|
| 375 |
+
regressions.append({
|
| 376 |
+
"type": "release_speed_regression",
|
| 377 |
+
"metric": "Speed",
|
| 378 |
+
"model": model,
|
| 379 |
+
"device": current_entry["device"],
|
| 380 |
+
"os": current_entry["os"],
|
| 381 |
+
"current_value": round(current_speed, 2),
|
| 382 |
+
"best_historical_value": round(best_historical_speed, 2),
|
| 383 |
+
"best_device": best_config["device"],
|
| 384 |
+
"best_os": best_config["os"],
|
| 385 |
+
"percentage_decrease": round(pct_change, 1)
|
| 386 |
+
})
|
| 387 |
+
|
| 388 |
+
return regressions
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def detect_tokens_device_regressions(current_data: List[Dict], all_historical_data: List[Dict], threshold: float = 20.0) -> List[Dict]:
|
| 392 |
+
"""
|
| 393 |
+
Detect tokens per second regressions for devices in current release.
|
| 394 |
+
Compares current data points against historical best for each model+device combination.
|
| 395 |
+
Returns list of regression alerts.
|
| 396 |
+
"""
|
| 397 |
+
regressions = []
|
| 398 |
+
|
| 399 |
+
# Build historical best tokens/sec for each model+device combination
|
| 400 |
+
historical_best = {}
|
| 401 |
+
best_configs = {}
|
| 402 |
+
for entry in all_historical_data:
|
| 403 |
+
if "tokens_per_second" not in entry:
|
| 404 |
+
continue
|
| 405 |
+
key = (entry["model"], entry["device"])
|
| 406 |
+
if key not in historical_best:
|
| 407 |
+
historical_best[key] = entry["tokens_per_second"]
|
| 408 |
+
best_configs[key] = entry
|
| 409 |
+
elif entry["tokens_per_second"] > historical_best[key]:
|
| 410 |
+
historical_best[key] = entry["tokens_per_second"]
|
| 411 |
+
best_configs[key] = entry
|
| 412 |
+
|
| 413 |
+
# Check each current data point against historical best
|
| 414 |
+
for entry in current_data:
|
| 415 |
+
if "tokens_per_second" not in entry:
|
| 416 |
+
continue
|
| 417 |
+
|
| 418 |
+
key = (entry["model"], entry["device"])
|
| 419 |
+
|
| 420 |
+
if key not in historical_best:
|
| 421 |
+
continue # No historical data for this combination
|
| 422 |
+
|
| 423 |
+
best_tokens = historical_best[key]
|
| 424 |
+
best_config = best_configs[key]
|
| 425 |
+
current_tokens = entry["tokens_per_second"]
|
| 426 |
+
|
| 427 |
+
if best_tokens > 0: # Avoid division by zero
|
| 428 |
+
pct_diff = (best_tokens - current_tokens) / best_tokens * 100
|
| 429 |
+
|
| 430 |
+
# Only flag if current is significantly slower than historical best
|
| 431 |
+
if pct_diff > threshold:
|
| 432 |
+
regressions.append({
|
| 433 |
+
"type": "device_tokens_discrepancy",
|
| 434 |
+
"metric": "Tokens/Second",
|
| 435 |
+
"model": entry["model"],
|
| 436 |
+
"device": entry["device"],
|
| 437 |
+
"os": entry["os"],
|
| 438 |
+
"current_value": round(current_tokens, 2),
|
| 439 |
+
"best_value": round(best_tokens, 2),
|
| 440 |
+
"best_device": best_config["device"],
|
| 441 |
+
"best_os": best_config["os"],
|
| 442 |
+
"percentage_diff": round(pct_diff, 1)
|
| 443 |
+
})
|
| 444 |
|
| 445 |
+
return regressions
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def detect_tokens_os_regressions(current_data: List[Dict], all_historical_data: List[Dict], threshold: float = 20.0) -> List[Dict]:
|
| 449 |
+
"""
|
| 450 |
+
Detect tokens per second regressions for OS versions in current release.
|
| 451 |
+
Compares current data points against historical best for each model+OS combination.
|
| 452 |
+
Returns list of regression alerts.
|
| 453 |
+
"""
|
| 454 |
+
regressions = []
|
| 455 |
|
| 456 |
+
# Build historical best tokens/sec for each model+OS combination
|
| 457 |
+
historical_best = {}
|
| 458 |
+
best_configs = {}
|
| 459 |
+
for entry in all_historical_data:
|
| 460 |
+
if "tokens_per_second" not in entry:
|
| 461 |
+
continue
|
| 462 |
+
key = (entry["model"], entry["os"])
|
| 463 |
+
if key not in historical_best:
|
| 464 |
+
historical_best[key] = entry["tokens_per_second"]
|
| 465 |
+
best_configs[key] = entry
|
| 466 |
+
elif entry["tokens_per_second"] > historical_best[key]:
|
| 467 |
+
historical_best[key] = entry["tokens_per_second"]
|
| 468 |
+
best_configs[key] = entry
|
| 469 |
+
|
| 470 |
+
# Check each current data point against historical best
|
| 471 |
+
for entry in current_data:
|
| 472 |
+
if "tokens_per_second" not in entry:
|
| 473 |
+
continue
|
| 474 |
+
|
| 475 |
+
key = (entry["model"], entry["os"])
|
| 476 |
+
|
| 477 |
+
if key not in historical_best:
|
| 478 |
+
continue # No historical data for this combination
|
| 479 |
|
| 480 |
+
best_tokens = historical_best[key]
|
| 481 |
+
best_config = best_configs[key]
|
| 482 |
+
current_tokens = entry["tokens_per_second"]
|
| 483 |
+
|
| 484 |
+
if best_tokens > 0: # Avoid division by zero
|
| 485 |
+
pct_diff = (best_tokens - current_tokens) / best_tokens * 100
|
| 486 |
|
| 487 |
+
# Only flag if current is significantly slower than historical best
|
| 488 |
+
if pct_diff > threshold:
|
| 489 |
regressions.append({
|
| 490 |
+
"type": "os_tokens_discrepancy",
|
| 491 |
+
"metric": "Tokens/Second",
|
| 492 |
+
"model": entry["model"],
|
| 493 |
+
"device": entry["device"],
|
| 494 |
+
"os": entry["os"],
|
| 495 |
+
"current_value": round(current_tokens, 2),
|
| 496 |
+
"best_value": round(best_tokens, 2),
|
| 497 |
+
"best_device": best_config["device"],
|
| 498 |
+
"best_os": best_config["os"],
|
| 499 |
+
"percentage_diff": round(pct_diff, 1)
|
| 500 |
+
})
|
| 501 |
+
|
| 502 |
+
return regressions
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
def detect_tokens_release_regressions(current_data: List[Dict], previous_data: List[Dict],
|
| 506 |
+
threshold: float = 20.0) -> List[Dict]:
|
| 507 |
+
"""
|
| 508 |
+
Detect tokens per second regressions in current release for each model.
|
| 509 |
+
Compares current tokens/sec against the best (highest) historical tokens/sec for that model.
|
| 510 |
+
Returns list of regression alerts.
|
| 511 |
+
"""
|
| 512 |
+
regressions = []
|
| 513 |
+
|
| 514 |
+
if not previous_data:
|
| 515 |
+
return regressions
|
| 516 |
+
|
| 517 |
+
# Group by model
|
| 518 |
+
model_current = defaultdict(list)
|
| 519 |
+
model_historical = defaultdict(list)
|
| 520 |
+
|
| 521 |
+
for entry in current_data:
|
| 522 |
+
if "tokens_per_second" in entry:
|
| 523 |
+
model_current[entry["model"]].append(entry)
|
| 524 |
+
|
| 525 |
+
for entry in previous_data:
|
| 526 |
+
if "tokens_per_second" in entry:
|
| 527 |
+
model_historical[entry["model"]].append(entry)
|
| 528 |
+
|
| 529 |
+
# Check each model
|
| 530 |
+
for model in model_current.keys():
|
| 531 |
+
if model not in model_historical:
|
| 532 |
+
continue # No historical data for this model
|
| 533 |
+
|
| 534 |
+
# Find best historical tokens/sec for this model
|
| 535 |
+
best_historical_tokens = max(entry["tokens_per_second"] for entry in model_historical[model])
|
| 536 |
+
best_config = next(e for e in model_historical[model] if e["tokens_per_second"] == best_historical_tokens)
|
| 537 |
+
|
| 538 |
+
# Check each current configuration against best historical
|
| 539 |
+
for current_entry in model_current[model]:
|
| 540 |
+
current_tokens = current_entry["tokens_per_second"]
|
| 541 |
+
|
| 542 |
+
if best_historical_tokens > 0: # Avoid division by zero
|
| 543 |
+
pct_change = (best_historical_tokens - current_tokens) / best_historical_tokens * 100
|
| 544 |
+
|
| 545 |
+
# Only flag significant tokens/sec decreases (regressions)
|
| 546 |
+
if pct_change > threshold:
|
| 547 |
+
regressions.append({
|
| 548 |
+
"type": "release_tokens_regression",
|
| 549 |
+
"metric": "Tokens/Second",
|
| 550 |
"model": model,
|
| 551 |
+
"device": current_entry["device"],
|
| 552 |
+
"os": current_entry["os"],
|
| 553 |
+
"current_value": round(current_tokens, 2),
|
| 554 |
+
"best_historical_value": round(best_historical_tokens, 2),
|
| 555 |
+
"best_device": best_config["device"],
|
| 556 |
+
"best_os": best_config["os"],
|
| 557 |
+
"percentage_decrease": round(pct_change, 1)
|
| 558 |
})
|
| 559 |
|
| 560 |
return regressions
|
| 561 |
|
| 562 |
|
| 563 |
def generate_slack_message(regressions: List[Dict]) -> Dict:
|
| 564 |
+
"""Generate Slack message payload for performance regression alerts."""
|
| 565 |
|
| 566 |
if not regressions:
|
| 567 |
return None
|
|
|
|
| 571 |
"type": "header",
|
| 572 |
"text": {
|
| 573 |
"type": "plain_text",
|
| 574 |
+
"text": "⚠️ WhisperKit Performance Regression Alert",
|
| 575 |
"emoji": True
|
| 576 |
}
|
| 577 |
},
|
|
|
|
| 580 |
"elements": [
|
| 581 |
{
|
| 582 |
"type": "mrkdwn",
|
| 583 |
+
"text": f"*Detected {len(regressions)} significant performance regression(s)*"
|
| 584 |
}
|
| 585 |
]
|
| 586 |
},
|
|
|
|
| 588 |
]
|
| 589 |
|
| 590 |
# Group regressions by type
|
| 591 |
+
wer_device = [r for r in regressions if r["type"] == "device_wer_discrepancy"]
|
| 592 |
+
wer_os = [r for r in regressions if r["type"] == "os_wer_discrepancy"]
|
| 593 |
+
wer_release = [r for r in regressions if r["type"] == "release_wer_regression"]
|
| 594 |
+
|
| 595 |
+
speed_device = [r for r in regressions if r["type"] == "device_speed_discrepancy"]
|
| 596 |
+
speed_os = [r for r in regressions if r["type"] == "os_speed_discrepancy"]
|
| 597 |
+
speed_release = [r for r in regressions if r["type"] == "release_speed_regression"]
|
| 598 |
|
| 599 |
+
tokens_device = [r for r in regressions if r["type"] == "device_tokens_discrepancy"]
|
| 600 |
+
tokens_os = [r for r in regressions if r["type"] == "os_tokens_discrepancy"]
|
| 601 |
+
tokens_release = [r for r in regressions if r["type"] == "release_tokens_regression"]
|
| 602 |
+
|
| 603 |
+
# WER Regressions
|
| 604 |
+
if wer_device:
|
| 605 |
blocks.append({
|
| 606 |
"type": "section",
|
| 607 |
"text": {
|
| 608 |
"type": "mrkdwn",
|
| 609 |
+
"text": "*WER Device Discrepancies:*"
|
| 610 |
}
|
| 611 |
})
|
| 612 |
|
| 613 |
+
for regression in wer_device:
|
| 614 |
blocks.append({
|
| 615 |
"type": "section",
|
| 616 |
"text": {
|
| 617 |
"type": "mrkdwn",
|
| 618 |
+
"text": f"*{regression['model']}*\n"
|
| 619 |
+
f"• {regression['device']}: {regression['current_value']}% WER\n"
|
| 620 |
+
f"• Best: {regression['best_value']}% WER ({regression['best_device']} on {regression['best_os']})\n"
|
| 621 |
+
f"• Deviation: +{regression['percentage_diff']}%"
|
| 622 |
}
|
| 623 |
})
|
| 624 |
|
| 625 |
+
if wer_os:
|
| 626 |
+
if wer_device:
|
| 627 |
blocks.append({"type": "divider"})
|
| 628 |
|
| 629 |
blocks.append({
|
| 630 |
"type": "section",
|
| 631 |
"text": {
|
| 632 |
"type": "mrkdwn",
|
| 633 |
+
"text": "*WER OS Version Discrepancies:*"
|
| 634 |
}
|
| 635 |
})
|
| 636 |
|
| 637 |
+
for regression in wer_os:
|
| 638 |
blocks.append({
|
| 639 |
"type": "section",
|
| 640 |
"text": {
|
| 641 |
"type": "mrkdwn",
|
| 642 |
+
"text": f"*{regression['model']}*\n"
|
| 643 |
+
f"• {regression['os']}: {regression['current_value']}% WER\n"
|
| 644 |
+
f"• Best: {regression['best_value']}% WER ({regression['best_device']} on {regression['best_os']})\n"
|
| 645 |
+
f"• Deviation: +{regression['percentage_diff']}%"
|
| 646 |
}
|
| 647 |
})
|
| 648 |
|
| 649 |
+
if wer_release:
|
| 650 |
+
if wer_device or wer_os:
|
| 651 |
blocks.append({"type": "divider"})
|
| 652 |
|
| 653 |
blocks.append({
|
| 654 |
"type": "section",
|
| 655 |
"text": {
|
| 656 |
"type": "mrkdwn",
|
| 657 |
+
"text": "*WER Release-to-Release Regressions:*"
|
| 658 |
}
|
| 659 |
})
|
| 660 |
|
| 661 |
+
for regression in wer_release:
|
| 662 |
blocks.append({
|
| 663 |
"type": "section",
|
| 664 |
"text": {
|
| 665 |
"type": "mrkdwn",
|
| 666 |
"text": f"*{regression['model']}* on {regression['device']} ({regression['os']})\n"
|
| 667 |
+
f"• Current: {regression['current_value']}% WER\n"
|
| 668 |
+
f"• Best Historical: {regression['best_historical_value']}% WER ({regression['best_device']} on {regression['best_os']})\n"
|
| 669 |
f"• Increase: +{regression['percentage_increase']}%"
|
| 670 |
}
|
| 671 |
})
|
| 672 |
|
| 673 |
+
# Speed Regressions
|
| 674 |
+
if speed_device:
|
| 675 |
+
if wer_device or wer_os or wer_release:
|
| 676 |
+
blocks.append({"type": "divider"})
|
| 677 |
+
|
| 678 |
+
blocks.append({
|
| 679 |
+
"type": "section",
|
| 680 |
+
"text": {
|
| 681 |
+
"type": "mrkdwn",
|
| 682 |
+
"text": "*Speed Device Discrepancies:*"
|
| 683 |
+
}
|
| 684 |
+
})
|
| 685 |
+
|
| 686 |
+
for regression in speed_device:
|
| 687 |
+
blocks.append({
|
| 688 |
+
"type": "section",
|
| 689 |
+
"text": {
|
| 690 |
+
"type": "mrkdwn",
|
| 691 |
+
"text": f"*{regression['model']}*\n"
|
| 692 |
+
f"• {regression['device']}: {regression['current_value']}x speed\n"
|
| 693 |
+
f"• Best: {regression['best_value']}x speed ({regression['best_device']} on {regression['best_os']})\n"
|
| 694 |
+
f"• Slower by: {regression['percentage_diff']}%"
|
| 695 |
+
}
|
| 696 |
+
})
|
| 697 |
+
|
| 698 |
+
if speed_os:
|
| 699 |
+
if any([wer_device, wer_os, wer_release, speed_device]):
|
| 700 |
+
blocks.append({"type": "divider"})
|
| 701 |
+
|
| 702 |
+
blocks.append({
|
| 703 |
+
"type": "section",
|
| 704 |
+
"text": {
|
| 705 |
+
"type": "mrkdwn",
|
| 706 |
+
"text": "*Speed OS Version Discrepancies:*"
|
| 707 |
+
}
|
| 708 |
+
})
|
| 709 |
+
|
| 710 |
+
for regression in speed_os:
|
| 711 |
+
blocks.append({
|
| 712 |
+
"type": "section",
|
| 713 |
+
"text": {
|
| 714 |
+
"type": "mrkdwn",
|
| 715 |
+
"text": f"*{regression['model']}*\n"
|
| 716 |
+
f"• {regression['os']}: {regression['current_value']}x speed\n"
|
| 717 |
+
f"• Best: {regression['best_value']}x speed ({regression['best_device']} on {regression['best_os']})\n"
|
| 718 |
+
f"• Slower by: {regression['percentage_diff']}%"
|
| 719 |
+
}
|
| 720 |
+
})
|
| 721 |
+
|
| 722 |
+
if speed_release:
|
| 723 |
+
if any([wer_device, wer_os, wer_release, speed_device, speed_os]):
|
| 724 |
+
blocks.append({"type": "divider"})
|
| 725 |
+
|
| 726 |
+
blocks.append({
|
| 727 |
+
"type": "section",
|
| 728 |
+
"text": {
|
| 729 |
+
"type": "mrkdwn",
|
| 730 |
+
"text": "*Speed Release-to-Release Regressions:*"
|
| 731 |
+
}
|
| 732 |
+
})
|
| 733 |
+
|
| 734 |
+
for regression in speed_release:
|
| 735 |
+
blocks.append({
|
| 736 |
+
"type": "section",
|
| 737 |
+
"text": {
|
| 738 |
+
"type": "mrkdwn",
|
| 739 |
+
"text": f"*{regression['model']}* on {regression['device']} ({regression['os']})\n"
|
| 740 |
+
f"• Current: {regression['current_value']}x speed\n"
|
| 741 |
+
f"• Best Historical: {regression['best_historical_value']}x speed ({regression['best_device']} on {regression['best_os']})\n"
|
| 742 |
+
f"• Slower by: {regression.get('percentage_decrease', regression.get('percentage_increase', 0))}%"
|
| 743 |
+
}
|
| 744 |
+
})
|
| 745 |
+
|
| 746 |
+
# Tokens Per Second Regressions
|
| 747 |
+
if tokens_device:
|
| 748 |
+
if any([wer_device, wer_os, wer_release, speed_device, speed_os, speed_release]):
|
| 749 |
+
blocks.append({"type": "divider"})
|
| 750 |
+
|
| 751 |
+
blocks.append({
|
| 752 |
+
"type": "section",
|
| 753 |
+
"text": {
|
| 754 |
+
"type": "mrkdwn",
|
| 755 |
+
"text": "*Tokens/Second Device Discrepancies:*"
|
| 756 |
+
}
|
| 757 |
+
})
|
| 758 |
+
|
| 759 |
+
for regression in tokens_device:
|
| 760 |
+
blocks.append({
|
| 761 |
+
"type": "section",
|
| 762 |
+
"text": {
|
| 763 |
+
"type": "mrkdwn",
|
| 764 |
+
"text": f"*{regression['model']}*\n"
|
| 765 |
+
f"• {regression['device']}: {regression['current_value']} tokens/sec\n"
|
| 766 |
+
f"• Best: {regression['best_value']} tokens/sec ({regression['best_device']} on {regression['best_os']})\n"
|
| 767 |
+
f"• Slower by: {regression['percentage_diff']}%"
|
| 768 |
+
}
|
| 769 |
+
})
|
| 770 |
+
|
| 771 |
+
if tokens_os:
|
| 772 |
+
if any([wer_device, wer_os, wer_release, speed_device, speed_os, speed_release, tokens_device]):
|
| 773 |
+
blocks.append({"type": "divider"})
|
| 774 |
+
|
| 775 |
+
blocks.append({
|
| 776 |
+
"type": "section",
|
| 777 |
+
"text": {
|
| 778 |
+
"type": "mrkdwn",
|
| 779 |
+
"text": "*Tokens/Second OS Version Discrepancies:*"
|
| 780 |
+
}
|
| 781 |
+
})
|
| 782 |
+
|
| 783 |
+
for regression in tokens_os:
|
| 784 |
+
blocks.append({
|
| 785 |
+
"type": "section",
|
| 786 |
+
"text": {
|
| 787 |
+
"type": "mrkdwn",
|
| 788 |
+
"text": f"*{regression['model']}*\n"
|
| 789 |
+
f"• {regression['os']}: {regression['current_value']} tokens/sec\n"
|
| 790 |
+
f"• Best: {regression['best_value']} tokens/sec ({regression['best_device']} on {regression['best_os']})\n"
|
| 791 |
+
f"• Slower by: {regression['percentage_diff']}%"
|
| 792 |
+
}
|
| 793 |
+
})
|
| 794 |
+
|
| 795 |
+
if tokens_release:
|
| 796 |
+
if any([wer_device, wer_os, wer_release, speed_device, speed_os, speed_release, tokens_device, tokens_os]):
|
| 797 |
+
blocks.append({"type": "divider"})
|
| 798 |
+
|
| 799 |
+
blocks.append({
|
| 800 |
+
"type": "section",
|
| 801 |
+
"text": {
|
| 802 |
+
"type": "mrkdwn",
|
| 803 |
+
"text": "*Tokens/Second Release-to-Release Regressions:*"
|
| 804 |
+
}
|
| 805 |
+
})
|
| 806 |
+
|
| 807 |
+
for regression in tokens_release:
|
| 808 |
+
blocks.append({
|
| 809 |
+
"type": "section",
|
| 810 |
+
"text": {
|
| 811 |
+
"type": "mrkdwn",
|
| 812 |
+
"text": f"*{regression['model']}* on {regression['device']} ({regression['os']})\n"
|
| 813 |
+
f"• Current: {regression['current_value']} tokens/sec\n"
|
| 814 |
+
f"• Best Historical: {regression['best_historical_value']} tokens/sec ({regression['best_device']} on {regression['best_os']})\n"
|
| 815 |
+
f"• Slower by: {regression.get('percentage_decrease', regression.get('percentage_increase', 0))}%"
|
| 816 |
+
}
|
| 817 |
+
})
|
| 818 |
+
|
| 819 |
return {"blocks": blocks}
|
| 820 |
|
| 821 |
|
| 822 |
+
def check_performance_regressions():
|
| 823 |
+
"""Main function to check for performance regressions and generate alerts."""
|
| 824 |
|
| 825 |
# Load version data to get commit hashes
|
| 826 |
try:
|
|
|
|
| 839 |
current_commit = releases[-1] if releases else None
|
| 840 |
previous_commit = releases[-2] if len(releases) >= 2 else None
|
| 841 |
|
| 842 |
+
print(f"Checking performance regressions for current commit: {current_commit}")
|
| 843 |
if previous_commit:
|
| 844 |
print(f"Comparing against previous commit: {previous_commit}")
|
| 845 |
|
|
|
|
| 853 |
|
| 854 |
all_regressions = []
|
| 855 |
|
| 856 |
+
# WER Checks
|
| 857 |
+
print("\n=== Checking WER Regressions ===")
|
| 858 |
+
device_regressions = detect_device_regressions(current_data, all_historical_data, threshold=20.0)
|
| 859 |
all_regressions.extend(device_regressions)
|
| 860 |
+
print(f"Found {len(device_regressions)} WER device discrepancies")
|
| 861 |
|
| 862 |
+
os_regressions = detect_os_regressions(current_data, all_historical_data, threshold=20.0)
|
|
|
|
| 863 |
all_regressions.extend(os_regressions)
|
| 864 |
+
print(f"Found {len(os_regressions)} WER OS discrepancies")
|
| 865 |
|
|
|
|
| 866 |
release_regressions = detect_release_regressions(current_data, previous_data, threshold=20.0)
|
| 867 |
all_regressions.extend(release_regressions)
|
| 868 |
+
print(f"Found {len(release_regressions)} WER release regressions")
|
| 869 |
+
|
| 870 |
+
# Speed Checks
|
| 871 |
+
print("\n=== Checking Speed Regressions ===")
|
| 872 |
+
speed_device_regressions = detect_speed_device_regressions(current_data, all_historical_data, threshold=20.0)
|
| 873 |
+
all_regressions.extend(speed_device_regressions)
|
| 874 |
+
print(f"Found {len(speed_device_regressions)} speed device discrepancies")
|
| 875 |
+
|
| 876 |
+
speed_os_regressions = detect_speed_os_regressions(current_data, all_historical_data, threshold=20.0)
|
| 877 |
+
all_regressions.extend(speed_os_regressions)
|
| 878 |
+
print(f"Found {len(speed_os_regressions)} speed OS discrepancies")
|
| 879 |
+
|
| 880 |
+
speed_release_regressions = detect_speed_release_regressions(current_data, previous_data, threshold=20.0)
|
| 881 |
+
all_regressions.extend(speed_release_regressions)
|
| 882 |
+
print(f"Found {len(speed_release_regressions)} speed release regressions")
|
| 883 |
+
|
| 884 |
+
# Tokens Per Second Checks
|
| 885 |
+
print("\n=== Checking Tokens/Second Regressions ===")
|
| 886 |
+
tokens_device_regressions = detect_tokens_device_regressions(current_data, all_historical_data, threshold=20.0)
|
| 887 |
+
all_regressions.extend(tokens_device_regressions)
|
| 888 |
+
print(f"Found {len(tokens_device_regressions)} tokens/sec device discrepancies")
|
| 889 |
+
|
| 890 |
+
tokens_os_regressions = detect_tokens_os_regressions(current_data, all_historical_data, threshold=20.0)
|
| 891 |
+
all_regressions.extend(tokens_os_regressions)
|
| 892 |
+
print(f"Found {len(tokens_os_regressions)} tokens/sec OS discrepancies")
|
| 893 |
+
|
| 894 |
+
tokens_release_regressions = detect_tokens_release_regressions(current_data, previous_data, threshold=20.0)
|
| 895 |
+
all_regressions.extend(tokens_release_regressions)
|
| 896 |
+
print(f"Found {len(tokens_release_regressions)} tokens/sec release regressions")
|
| 897 |
|
| 898 |
# Generate outputs
|
| 899 |
github_output = os.getenv("GITHUB_OUTPUT")
|
| 900 |
if github_output:
|
| 901 |
with open(github_output, "a") as f:
|
| 902 |
+
print(f"has_performance_regressions={'true' if all_regressions else 'false'}", file=f)
|
| 903 |
+
print(f"performance_regression_count={len(all_regressions)}", file=f)
|
| 904 |
|
| 905 |
if all_regressions:
|
| 906 |
slack_payload = generate_slack_message(all_regressions)
|
| 907 |
if slack_payload:
|
| 908 |
+
f.write("performance_regression_slack_payload<<EOF\n")
|
| 909 |
json.dump(slack_payload, f, indent=2)
|
| 910 |
f.write("\nEOF\n")
|
| 911 |
|
| 912 |
# Print summary for debugging
|
| 913 |
if all_regressions:
|
| 914 |
+
print(f"\n⚠️ ALERT: Found {len(all_regressions)} performance regressions!")
|
| 915 |
for regression in all_regressions:
|
| 916 |
print(f" - {regression['type']}: {regression.get('model', 'N/A')}")
|
| 917 |
else:
|
| 918 |
+
print("\n✅ No significant performance regressions detected")
|
| 919 |
|
| 920 |
|
| 921 |
if __name__ == "__main__":
|
| 922 |
+
check_performance_regressions()
|