Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from diffusers import StableDiffusionPipeline
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# --- Load NLP pipelines ---
|
| 7 |
+
clf = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 8 |
+
ner = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
| 9 |
+
mlm = pipeline("fill-mask", model="bert-base-uncased")
|
| 10 |
+
qa = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
| 11 |
+
|
| 12 |
+
# --- Vision pipelines ---
|
| 13 |
+
img_clf = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 14 |
+
det = pipeline("object-detection", model="facebook/detr-resnet-50")
|
| 15 |
+
seg = pipeline("image-segmentation", model="facebook/mask2former-swin-large-coco")
|
| 16 |
+
|
| 17 |
+
# --- Diffusion model for text-to-image ---
|
| 18 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
| 19 |
+
sd_pipe = sd_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
|
| 21 |
+
# --- Speech ---
|
| 22 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
| 23 |
+
tts = pipeline("text-to-speech", model="espnet/kan-bayashi_ljspeech_vits")
|
| 24 |
+
|
| 25 |
+
# --- Functions ---
|
| 26 |
+
def classify_text(text):
|
| 27 |
+
return clf(text)
|
| 28 |
+
|
| 29 |
+
def ner_text(text):
|
| 30 |
+
return ner(text)
|
| 31 |
+
|
| 32 |
+
def fill_blank(text):
|
| 33 |
+
return mlm(text)
|
| 34 |
+
|
| 35 |
+
def answer_question(context, question):
|
| 36 |
+
return qa(question=question, context=context)
|
| 37 |
+
|
| 38 |
+
def classify_image(image):
|
| 39 |
+
return img_clf(image)
|
| 40 |
+
|
| 41 |
+
def detect_objects(image):
|
| 42 |
+
return det(image)
|
| 43 |
+
|
| 44 |
+
def segment_image(image):
|
| 45 |
+
return seg(image)
|
| 46 |
+
|
| 47 |
+
def generate_image(prompt):
|
| 48 |
+
image = sd_pipe(prompt).images[0]
|
| 49 |
+
return image
|
| 50 |
+
|
| 51 |
+
def transcribe(audio):
|
| 52 |
+
return asr(audio)["text"]
|
| 53 |
+
|
| 54 |
+
def speak_text(text):
|
| 55 |
+
audio = tts(text)
|
| 56 |
+
return (audio["sample_rate"], audio["audio"])
|
| 57 |
+
|
| 58 |
+
# --- Gradio Interface ---
|
| 59 |
+
with gr.Blocks() as demo:
|
| 60 |
+
gr.Markdown("# 🌍 Environmental AI Toolkit")
|
| 61 |
+
|
| 62 |
+
with gr.Tab("Sentence Classification"):
|
| 63 |
+
txt_in = gr.Textbox(label="Enter text")
|
| 64 |
+
txt_out = gr.JSON(label="Classification Result")
|
| 65 |
+
txt_in.submit(classify_text, txt_in, txt_out)
|
| 66 |
+
|
| 67 |
+
with gr.Tab("NER"):
|
| 68 |
+
ner_in = gr.Textbox(label="Enter text")
|
| 69 |
+
ner_out = gr.JSON(label="Entities")
|
| 70 |
+
ner_in.submit(ner_text, ner_in, ner_out)
|
| 71 |
+
|
| 72 |
+
with gr.Tab("Fill-in-the-Blank"):
|
| 73 |
+
mlm_in = gr.Textbox(label="Enter sentence with [MASK]")
|
| 74 |
+
mlm_out = gr.JSON(label="Predictions")
|
| 75 |
+
mlm_in.submit(fill_blank, mlm_in, mlm_out)
|
| 76 |
+
|
| 77 |
+
with gr.Tab("Question Answering"):
|
| 78 |
+
context = gr.Textbox(label="Context")
|
| 79 |
+
question = gr.Textbox(label="Question")
|
| 80 |
+
qa_out = gr.JSON(label="Answer")
|
| 81 |
+
gr.Button("Answer").click(answer_question, [context, question], qa_out)
|
| 82 |
+
|
| 83 |
+
with gr.Tab("Image Classification"):
|
| 84 |
+
img_in = gr.Image(type="pil")
|
| 85 |
+
img_out = gr.JSON(label="Labels")
|
| 86 |
+
img_in.upload(classify_image, img_in, img_out)
|
| 87 |
+
|
| 88 |
+
with gr.Tab("Object Detection"):
|
| 89 |
+
det_in = gr.Image(type="pil")
|
| 90 |
+
det_out = gr.JSON(label="Objects")
|
| 91 |
+
det_in.upload(detect_objects, det_in, det_out)
|
| 92 |
+
|
| 93 |
+
with gr.Tab("Segmentation"):
|
| 94 |
+
seg_in = gr.Image(type="pil")
|
| 95 |
+
seg_out = gr.JSON(label="Segments")
|
| 96 |
+
seg_in.upload(segment_image, seg_in, seg_out)
|
| 97 |
+
|
| 98 |
+
with gr.Tab("Image Generation"):
|
| 99 |
+
gen_in = gr.Textbox(label="Prompt")
|
| 100 |
+
gen_out = gr.Image(label="Generated Image")
|
| 101 |
+
gr.Button("Generate").click(generate_image, gen_in, gen_out)
|
| 102 |
+
|
| 103 |
+
with gr.Tab("Speech Recognition"):
|
| 104 |
+
audio_in = gr.Audio(type="filepath")
|
| 105 |
+
audio_out = gr.Textbox(label="Transcription")
|
| 106 |
+
audio_in.change(transcribe, audio_in, audio_out)
|
| 107 |
+
|
| 108 |
+
with gr.Tab("Text-to-Speech"):
|
| 109 |
+
tts_in = gr.Textbox(label="Text to Speak")
|
| 110 |
+
tts_out = gr.Audio(label="Generated Speech")
|
| 111 |
+
gr.Button("Speak").click(speak_text, tts_in, tts_out)
|
| 112 |
+
|
| 113 |
+
demo.launch()
|