Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- extractive.py +61 -0
- requirements.txt +6 -0
- utils.py +9 -0
extractive.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# extractive.py
|
| 2 |
+
import nltk
|
| 3 |
+
from nltk.corpus import stopwords
|
| 4 |
+
from nltk.tokenize import sent_tokenize
|
| 5 |
+
import networkx as nx
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
nltk.download('stopwords')
|
| 10 |
+
nltk.download('punkt')
|
| 11 |
+
|
| 12 |
+
def preprocess_text(text):
|
| 13 |
+
sentences = sent_tokenize(text)
|
| 14 |
+
return sentences
|
| 15 |
+
|
| 16 |
+
def get_sentence_embeddings(sentences, model, tokenizer):
|
| 17 |
+
embeddings = []
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
for sentence in sentences:
|
| 20 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 21 |
+
outputs = model(**inputs)
|
| 22 |
+
sentence_embedding = torch.mean(outputs.last_hidden_state, dim=1)
|
| 23 |
+
embeddings.append(sentence_embedding.squeeze().numpy())
|
| 24 |
+
return np.array(embeddings)
|
| 25 |
+
|
| 26 |
+
def build_semantic_graph(embeddings, similarity_threshold=0.75):
|
| 27 |
+
graph = nx.Graph()
|
| 28 |
+
for i, emb1 in enumerate(embeddings):
|
| 29 |
+
for j, emb2 in enumerate(embeddings):
|
| 30 |
+
if i != j:
|
| 31 |
+
similarity = np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2))
|
| 32 |
+
if similarity >= similarity_threshold:
|
| 33 |
+
graph.add_edge(i, j, weight=similarity)
|
| 34 |
+
return graph
|
| 35 |
+
|
| 36 |
+
def apply_textrank(graph, sentences, damping_factor=0.85, max_iter=100):
|
| 37 |
+
num_nodes = len(sentences)
|
| 38 |
+
personalization = {i: 1 / num_nodes for i in range(num_nodes)}
|
| 39 |
+
scores = nx.pagerank(graph, personalization=personalization, max_iter=max_iter)
|
| 40 |
+
ranked_sentences = sorted(((score, idx) for idx, score in scores.items()), reverse=True)
|
| 41 |
+
return ranked_sentences
|
| 42 |
+
|
| 43 |
+
def generate_summary(ranked_sentences, sentences, max_length_ratio=0.5):
|
| 44 |
+
stop_words = set(stopwords.words('english'))
|
| 45 |
+
summary = []
|
| 46 |
+
current_length = 0
|
| 47 |
+
total_length = sum(len(sentence.split()) for sentence in sentences)
|
| 48 |
+
max_length = int(total_length * max_length_ratio)
|
| 49 |
+
|
| 50 |
+
for score, idx in ranked_sentences:
|
| 51 |
+
sentence = sentences[idx]
|
| 52 |
+
sentence_length = len(sentence.split())
|
| 53 |
+
sentence_words = [word for word in sentence.split() if word.lower() not in stop_words]
|
| 54 |
+
|
| 55 |
+
if current_length + sentence_length <= max_length:
|
| 56 |
+
summary.append(" ".join(sentence_words))
|
| 57 |
+
current_length += sentence_length
|
| 58 |
+
else:
|
| 59 |
+
break
|
| 60 |
+
|
| 61 |
+
return " ".join(summary)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
spacy
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
nltk
|
| 6 |
+
networkx
|
utils.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# utils.py
|
| 2 |
+
import spacy
|
| 3 |
+
|
| 4 |
+
nlp = spacy.load("en-core-sci-lg")
|
| 5 |
+
|
| 6 |
+
def extract_named_entities(text):
|
| 7 |
+
doc = nlp(text)
|
| 8 |
+
entities = [(ent.text) for ent in doc.ents]
|
| 9 |
+
return entities
|