Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import json
|
| 6 |
+
import torch
|
| 7 |
+
import faiss
|
| 8 |
+
|
| 9 |
+
# -----------------------------
|
| 10 |
+
# 1. Load BLIP Model
|
| 11 |
+
# -----------------------------
|
| 12 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 13 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 14 |
+
|
| 15 |
+
# -----------------------------
|
| 16 |
+
# 2. Load Vector DB (Fish Facts)
|
| 17 |
+
# -----------------------------
|
| 18 |
+
# Sample fish knowledge base
|
| 19 |
+
fish_data = [
|
| 20 |
+
{"name": "stonefish", "text": "Stonefish is highly venomous and lives in Indo-Pacific coastal waters."},
|
| 21 |
+
{"name": "pufferfish", "text": "Pufferfish contains tetrodotoxin and is poisonous if not properly prepared."},
|
| 22 |
+
{"name": "lionfish", "text": "Lionfish has venomous spines and can cause painful stings."},
|
| 23 |
+
{"name": "tuna", "text": "Tuna is a large, non-poisonous fish consumed globally."},
|
| 24 |
+
{"name": "salmon", "text": "Salmon is a commonly eaten, non-poisonous fish found in freshwater and ocean habitats."}
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
texts = [item["text"] for item in fish_data]
|
| 28 |
+
names = [item["name"] for item in fish_data]
|
| 29 |
+
|
| 30 |
+
# Encode fish data
|
| 31 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 32 |
+
embeddings = embedder.encode(texts)
|
| 33 |
+
|
| 34 |
+
# Create FAISS index
|
| 35 |
+
dim = embeddings[0].shape[0]
|
| 36 |
+
index = faiss.IndexFlatL2(dim)
|
| 37 |
+
index.add(embeddings)
|
| 38 |
+
|
| 39 |
+
# Toxic fish list
|
| 40 |
+
toxic_list = ["stonefish", "pufferfish", "lionfish"]
|
| 41 |
+
|
| 42 |
+
# -----------------------------
|
| 43 |
+
# 3. Fish Identifier Function
|
| 44 |
+
# -----------------------------
|
| 45 |
+
def identify_fish(image):
|
| 46 |
+
# Step 1: Generate caption from image
|
| 47 |
+
inputs = blip_processor(image, return_tensors="pt")
|
| 48 |
+
out = blip_model.generate(**inputs)
|
| 49 |
+
caption = blip_processor.decode(out[0], skip_special_tokens=True)
|
| 50 |
+
|
| 51 |
+
# Step 2: Search fish knowledge base
|
| 52 |
+
query_embed = embedder.encode([caption])
|
| 53 |
+
D, I = index.search(query_embed, k=1)
|
| 54 |
+
matched_fish = fish_data[I[0][0]]
|
| 55 |
+
name = matched_fish["name"]
|
| 56 |
+
info = matched_fish["text"]
|
| 57 |
+
|
| 58 |
+
# Step 3: Classify toxicity
|
| 59 |
+
is_poisonous = "Yes 🧪" if name in toxic_list else "No ✅"
|
| 60 |
+
|
| 61 |
+
# Step 4: Return result
|
| 62 |
+
return f"**Image Caption:** {caption}\n\n**Detected Fish:** {name.title()}\n**Poisonous:** {is_poisonous}\n**Fact:** {info}"
|
| 63 |
+
|
| 64 |
+
# -----------------------------
|
| 65 |
+
# 4. Gradio UI
|
| 66 |
+
# -----------------------------
|
| 67 |
+
demo = gr.Interface(
|
| 68 |
+
fn=identify_fish,
|
| 69 |
+
inputs=gr.Image(type="pil"),
|
| 70 |
+
outputs="markdown",
|
| 71 |
+
title="🧠 Smart Fish Identifier (BLIP + RAG)",
|
| 72 |
+
description="Upload a fish image. We use BLIP to describe the fish, then match it with our fish fact knowledge base using RAG to determine if it's poisonous."
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
if __name__ == '__main__':
|
| 76 |
+
demo.launch()
|