import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def login_screen(): username = gr.Textbox("Username: ").value password = gr.Textbox("Password: ", type="password").value if username == "admin" and password == "pass1234": return None # Login successful, no output else: return "Incorrect credentials. Please try again." def chat(message): if not hasattr(chat, 'authorized'): chat.authorized = None # Flag for login status if chat.authorized is None: response = login_screen() if response is None: chat.authorized = True return "Welcome! Ask me anything about Manufacturing" else: return response else: # Call the actual job description generation function return generate_job_description(message, max_tokens, temperature, top_p) def generate_job_description( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( generate_job_description, additional_inputs=[ gr.Textbox(value="You are an expert in mechanical engineering, manufacturing and production", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title="Manufacturing expert!", description="This agent answers questions related to manufacturing. Ask specific questions. Happy making things happen. ", analytics_enabled=True ) if __name__ == "__main__": demo.launch()