Spaces:
Sleeping
Sleeping
Aspiring Astro
commited on
Commit
·
8d2450a
1
Parent(s):
926c115
switch to using blocks
Browse files
app.ipynb
CHANGED
|
@@ -20,6 +20,9 @@
|
|
| 20 |
"#| export\n",
|
| 21 |
"from fastai.vision.all import *\n",
|
| 22 |
"import gradio as gr\n",
|
|
|
|
|
|
|
|
|
|
| 23 |
"title = \"FastAI - Big Cats Classifier\"\n",
|
| 24 |
"description = \"Classify big cats using all Resnet models available pre-trained in FastAI\""
|
| 25 |
]
|
|
@@ -41,7 +44,7 @@
|
|
| 41 |
"}\n",
|
| 42 |
"models = list(learners.keys())\n",
|
| 43 |
"\n",
|
| 44 |
-
"
|
| 45 |
]
|
| 46 |
},
|
| 47 |
{
|
|
@@ -53,11 +56,16 @@
|
|
| 53 |
"source": [
|
| 54 |
"#| export\n",
|
| 55 |
" \n",
|
| 56 |
-
"def classify_image(img
|
| 57 |
-
" learn = load_learner(
|
| 58 |
" pred,idx,probs = learn.predict(img)\n",
|
| 59 |
-
"
|
| 60 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
]
|
| 62 |
},
|
| 63 |
{
|
|
@@ -107,9 +115,7 @@
|
|
| 107 |
"name": "stdout",
|
| 108 |
"output_type": "stream",
|
| 109 |
"text": [
|
| 110 |
-
"cheetah
|
| 111 |
-
" 6.6378e-07, 1.2428e-08, 7.0062e-09])\n",
|
| 112 |
-
"{'african leopard': 2.932508635922204e-08, 'cheetah': 0.9999860525131226, 'clouded leopard': 1.2872064525382143e-09, 'cougar': 1.3283532098284923e-05, 'jaguar': 3.6217517873637917e-08, 'lion': 6.637808382947696e-07, 'snow leopard': 1.242834812842375e-08, 'tiger': 7.0062102786039304e-09}\n"
|
| 113 |
]
|
| 114 |
},
|
| 115 |
{
|
|
@@ -153,9 +159,7 @@
|
|
| 153 |
"name": "stdout",
|
| 154 |
"output_type": "stream",
|
| 155 |
"text": [
|
| 156 |
-
"
|
| 157 |
-
" 8.4150e-10, 2.4537e-08, 4.5623e-07])\n",
|
| 158 |
-
"{'african leopard': 2.241393531221547e-06, 'cheetah': 4.812366114492761e-07, 'clouded leopard': 1.5911437500903958e-08, 'cougar': 1.5740527103957902e-08, 'jaguar': 0.9999967813491821, 'lion': 8.415030339214979e-10, 'snow leopard': 2.453731973162121e-08, 'tiger': 4.562308788536029e-07}\n"
|
| 159 |
]
|
| 160 |
},
|
| 161 |
{
|
|
@@ -199,9 +203,7 @@
|
|
| 199 |
"name": "stdout",
|
| 200 |
"output_type": "stream",
|
| 201 |
"text": [
|
| 202 |
-
"
|
| 203 |
-
" 3.1560e-08, 5.5170e-08, 1.0000e+00])\n",
|
| 204 |
-
"{'african leopard': 2.0139752976433556e-08, 'cheetah': 3.228871059413052e-10, 'clouded leopard': 3.0278118856585934e-07, 'cougar': 1.7037031341260445e-07, 'jaguar': 2.8470973134631095e-08, 'lion': 3.15602726175257e-08, 'snow leopard': 5.5169955714973185e-08, 'tiger': 0.9999994039535522}\n"
|
| 205 |
]
|
| 206 |
},
|
| 207 |
{
|
|
@@ -245,9 +247,7 @@
|
|
| 245 |
"name": "stdout",
|
| 246 |
"output_type": "stream",
|
| 247 |
"text": [
|
| 248 |
-
"
|
| 249 |
-
" 1.0296e-03, 1.6978e-04, 1.4883e-03])\n",
|
| 250 |
-
"{'african leopard': 0.0007720203138887882, 'cheetah': 9.645262616686523e-05, 'clouded leopard': 0.00036238841130398214, 'cougar': 0.9955006241798401, 'jaguar': 0.0005807342822663486, 'lion': 0.0010295877000316978, 'snow leopard': 0.000169777573319152, 'tiger': 0.0014882636023685336}\n"
|
| 251 |
]
|
| 252 |
},
|
| 253 |
{
|
|
@@ -291,9 +291,7 @@
|
|
| 291 |
"name": "stdout",
|
| 292 |
"output_type": "stream",
|
| 293 |
"text": [
|
| 294 |
-
"
|
| 295 |
-
" 9.9998e-01, 5.2166e-09, 1.6965e-05])\n",
|
| 296 |
-
"{'african leopard': 6.366598359619502e-10, 'cheetah': 2.1584540377261874e-07, 'clouded leopard': 6.540694652557022e-09, 'cougar': 1.1020346413204152e-08, 'jaguar': 1.3696873857327319e-08, 'lion': 0.9999828338623047, 'snow leopard': 5.2166360120509125e-09, 'tiger': 1.696465005807113e-05}\n"
|
| 297 |
]
|
| 298 |
},
|
| 299 |
{
|
|
@@ -337,9 +335,7 @@
|
|
| 337 |
"name": "stdout",
|
| 338 |
"output_type": "stream",
|
| 339 |
"text": [
|
| 340 |
-
"african leopard
|
| 341 |
-
" 1.8402e-04, 3.8208e-03, 1.8130e-04])\n",
|
| 342 |
-
"{'african leopard': 0.9780895113945007, 'cheetah': 0.0019370485097169876, 'clouded leopard': 0.0005185850313864648, 'cougar': 1.819587851059623e-05, 'jaguar': 0.015250639989972115, 'lion': 0.00018402353452984244, 'snow leopard': 0.0038208006881177425, 'tiger': 0.00018130325770471245}\n"
|
| 343 |
]
|
| 344 |
},
|
| 345 |
{
|
|
@@ -383,9 +379,7 @@
|
|
| 383 |
"name": "stdout",
|
| 384 |
"output_type": "stream",
|
| 385 |
"text": [
|
| 386 |
-
"
|
| 387 |
-
" 1.3141e-06, 7.5178e-06, 1.0570e-05])\n",
|
| 388 |
-
"{'african leopard': 3.5035314795095474e-05, 'cheetah': 2.8547888177854475e-06, 'clouded leopard': 0.9993757605552673, 'cougar': 1.8296907455805922e-06, 'jaguar': 0.0005652108229696751, 'lion': 1.314112978434423e-06, 'snow leopard': 7.517839094361989e-06, 'tiger': 1.0569940059212968e-05}\n"
|
| 389 |
]
|
| 390 |
},
|
| 391 |
{
|
|
@@ -429,9 +423,7 @@
|
|
| 429 |
"name": "stdout",
|
| 430 |
"output_type": "stream",
|
| 431 |
"text": [
|
| 432 |
-
"
|
| 433 |
-
" 5.4288e-06, 9.9982e-01, 6.8012e-09])\n",
|
| 434 |
-
"{'african leopard': 1.9796296157892357e-07, 'cheetah': 5.265908384899376e-07, 'clouded leopard': 0.00017047168512362987, 'cougar': 2.024643492859468e-07, 'jaguar': 1.5801049357833108e-08, 'lion': 5.4287702369038016e-06, 'snow leopard': 0.9998231530189514, 'tiger': 6.801158747293812e-09}\n"
|
| 435 |
]
|
| 436 |
}
|
| 437 |
],
|
|
@@ -446,124 +438,57 @@
|
|
| 446 |
},
|
| 447 |
{
|
| 448 |
"cell_type": "code",
|
| 449 |
-
"execution_count":
|
| 450 |
"id": "a48e7483-c04b-4048-a1ae-34a8c7986a57",
|
| 451 |
"metadata": {},
|
| 452 |
"outputs": [
|
| 453 |
-
{
|
| 454 |
-
"name": "stderr",
|
| 455 |
-
"output_type": "stream",
|
| 456 |
-
"text": [
|
| 457 |
-
"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/inputs.py:256: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
|
| 458 |
-
" warnings.warn(\n",
|
| 459 |
-
"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
|
| 460 |
-
" warnings.warn(value)\n",
|
| 461 |
-
"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/inputs.py:216: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
|
| 462 |
-
" warnings.warn(\n",
|
| 463 |
-
"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/outputs.py:196: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
|
| 464 |
-
" warnings.warn(\n",
|
| 465 |
-
"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/deprecation.py:40: UserWarning: The 'type' parameter has been deprecated. Use the Number component instead.\n",
|
| 466 |
-
" warnings.warn(value)\n"
|
| 467 |
-
]
|
| 468 |
-
},
|
| 469 |
{
|
| 470 |
"name": "stdout",
|
| 471 |
"output_type": "stream",
|
| 472 |
"text": [
|
| 473 |
"Running on local URL: http://127.0.0.1:7860\n",
|
| 474 |
-
"Running on public URL: https://9569b03a-5208-4edb.gradio.live\n",
|
| 475 |
"\n",
|
| 476 |
-
"
|
| 477 |
-
]
|
| 478 |
-
},
|
| 479 |
-
{
|
| 480 |
-
"data": {
|
| 481 |
-
"text/html": [
|
| 482 |
-
"\n",
|
| 483 |
-
"<style>\n",
|
| 484 |
-
" /* Turns off some styling */\n",
|
| 485 |
-
" progress {\n",
|
| 486 |
-
" /* gets rid of default border in Firefox and Opera. */\n",
|
| 487 |
-
" border: none;\n",
|
| 488 |
-
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
|
| 489 |
-
" background-size: auto;\n",
|
| 490 |
-
" }\n",
|
| 491 |
-
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
|
| 492 |
-
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
|
| 493 |
-
" }\n",
|
| 494 |
-
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
|
| 495 |
-
" background: #F44336;\n",
|
| 496 |
-
" }\n",
|
| 497 |
-
"</style>\n"
|
| 498 |
-
],
|
| 499 |
-
"text/plain": [
|
| 500 |
-
"<IPython.core.display.HTML object>"
|
| 501 |
-
]
|
| 502 |
-
},
|
| 503 |
-
"metadata": {},
|
| 504 |
-
"output_type": "display_data"
|
| 505 |
-
},
|
| 506 |
-
{
|
| 507 |
-
"data": {
|
| 508 |
-
"text/html": [],
|
| 509 |
-
"text/plain": [
|
| 510 |
-
"<IPython.core.display.HTML object>"
|
| 511 |
-
]
|
| 512 |
-
},
|
| 513 |
-
"metadata": {},
|
| 514 |
-
"output_type": "display_data"
|
| 515 |
-
},
|
| 516 |
-
{
|
| 517 |
-
"name": "stdout",
|
| 518 |
-
"output_type": "stream",
|
| 519 |
-
"text": [
|
| 520 |
-
"snow leopard TensorBase(6) TensorBase([1.9796e-07, 5.2659e-07, 1.7047e-04, 2.0246e-07, 1.5801e-08,\n",
|
| 521 |
-
" 5.4288e-06, 9.9982e-01, 6.8012e-09])\n"
|
| 522 |
]
|
| 523 |
},
|
| 524 |
{
|
| 525 |
-
"
|
| 526 |
-
"text/html": [
|
| 527 |
-
"\n",
|
| 528 |
-
"<style>\n",
|
| 529 |
-
" /* Turns off some styling */\n",
|
| 530 |
-
" progress {\n",
|
| 531 |
-
" /* gets rid of default border in Firefox and Opera. */\n",
|
| 532 |
-
" border: none;\n",
|
| 533 |
-
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
|
| 534 |
-
" background-size: auto;\n",
|
| 535 |
-
" }\n",
|
| 536 |
-
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
|
| 537 |
-
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
|
| 538 |
-
" }\n",
|
| 539 |
-
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
|
| 540 |
-
" background: #F44336;\n",
|
| 541 |
-
" }\n",
|
| 542 |
-
"</style>\n"
|
| 543 |
-
],
|
| 544 |
-
"text/plain": [
|
| 545 |
-
"<IPython.core.display.HTML object>"
|
| 546 |
-
]
|
| 547 |
-
},
|
| 548 |
-
"metadata": {},
|
| 549 |
-
"output_type": "display_data"
|
| 550 |
-
},
|
| 551 |
-
{
|
| 552 |
-
"data": {
|
| 553 |
-
"text/html": [],
|
| 554 |
-
"text/plain": [
|
| 555 |
-
"<IPython.core.display.HTML object>"
|
| 556 |
-
]
|
| 557 |
-
},
|
| 558 |
-
"metadata": {},
|
| 559 |
-
"output_type": "display_data"
|
| 560 |
-
},
|
| 561 |
-
{
|
| 562 |
-
"name": "stdout",
|
| 563 |
"output_type": "stream",
|
| 564 |
"text": [
|
| 565 |
-
"
|
| 566 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
]
|
| 568 |
},
|
| 569 |
{
|
|
@@ -603,14 +528,6 @@
|
|
| 603 |
"metadata": {},
|
| 604 |
"output_type": "display_data"
|
| 605 |
},
|
| 606 |
-
{
|
| 607 |
-
"name": "stdout",
|
| 608 |
-
"output_type": "stream",
|
| 609 |
-
"text": [
|
| 610 |
-
"tiger TensorBase(7) TensorBase([2.0140e-08, 3.2289e-10, 3.0278e-07, 1.7037e-07, 2.8471e-08,\n",
|
| 611 |
-
" 3.1560e-08, 5.5170e-08, 1.0000e+00])\n"
|
| 612 |
-
]
|
| 613 |
-
},
|
| 614 |
{
|
| 615 |
"data": {
|
| 616 |
"text/html": [
|
|
@@ -648,14 +565,6 @@
|
|
| 648 |
"metadata": {},
|
| 649 |
"output_type": "display_data"
|
| 650 |
},
|
| 651 |
-
{
|
| 652 |
-
"name": "stdout",
|
| 653 |
-
"output_type": "stream",
|
| 654 |
-
"text": [
|
| 655 |
-
"cheetah TensorBase(1) TensorBase([2.9325e-08, 9.9999e-01, 1.2872e-09, 1.3284e-05, 3.6218e-08,\n",
|
| 656 |
-
" 6.6378e-07, 1.2428e-08, 7.0062e-09])\n"
|
| 657 |
-
]
|
| 658 |
-
},
|
| 659 |
{
|
| 660 |
"data": {
|
| 661 |
"text/html": [
|
|
@@ -697,84 +606,47 @@
|
|
| 697 |
"name": "stdout",
|
| 698 |
"output_type": "stream",
|
| 699 |
"text": [
|
| 700 |
-
"
|
| 701 |
-
" 1.3141e-06, 7.5178e-06, 1.0570e-05])\n"
|
| 702 |
]
|
| 703 |
},
|
| 704 |
{
|
| 705 |
"data": {
|
| 706 |
-
"text/
|
| 707 |
-
"\n",
|
| 708 |
-
"<style>\n",
|
| 709 |
-
" /* Turns off some styling */\n",
|
| 710 |
-
" progress {\n",
|
| 711 |
-
" /* gets rid of default border in Firefox and Opera. */\n",
|
| 712 |
-
" border: none;\n",
|
| 713 |
-
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
|
| 714 |
-
" background-size: auto;\n",
|
| 715 |
-
" }\n",
|
| 716 |
-
" progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
|
| 717 |
-
" background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
|
| 718 |
-
" }\n",
|
| 719 |
-
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
|
| 720 |
-
" background: #F44336;\n",
|
| 721 |
-
" }\n",
|
| 722 |
-
"</style>\n"
|
| 723 |
-
],
|
| 724 |
-
"text/plain": [
|
| 725 |
-
"<IPython.core.display.HTML object>"
|
| 726 |
-
]
|
| 727 |
-
},
|
| 728 |
-
"metadata": {},
|
| 729 |
-
"output_type": "display_data"
|
| 730 |
-
},
|
| 731 |
-
{
|
| 732 |
-
"data": {
|
| 733 |
-
"text/html": [],
|
| 734 |
-
"text/plain": [
|
| 735 |
-
"<IPython.core.display.HTML object>"
|
| 736 |
-
]
|
| 737 |
},
|
|
|
|
| 738 |
"metadata": {},
|
| 739 |
-
"output_type": "
|
| 740 |
-
},
|
| 741 |
-
{
|
| 742 |
-
"name": "stdout",
|
| 743 |
-
"output_type": "stream",
|
| 744 |
-
"text": [
|
| 745 |
-
"cougar TensorBase(3) TensorBase([7.7202e-04, 9.6453e-05, 3.6239e-04, 9.9550e-01, 5.8073e-04,\n",
|
| 746 |
-
" 1.0296e-03, 1.6978e-04, 1.4883e-03])\n",
|
| 747 |
-
"Keyboard interruption in main thread... closing server.\n",
|
| 748 |
-
"Killing tunnel 127.0.0.1:7860 <> https://9569b03a-5208-4edb.gradio.live\n"
|
| 749 |
-
]
|
| 750 |
}
|
| 751 |
],
|
| 752 |
"source": [
|
| 753 |
"#| export\n",
|
| 754 |
-
"image = gr.inputs.Image()\n",
|
| 755 |
-
"model = gr.inputs.Dropdown(choices=models)\n",
|
| 756 |
-
"label = gr.outputs.Label()\n",
|
| 757 |
"example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ]\n",
|
| 758 |
-
"
|
| 759 |
-
"
|
| 760 |
-
"
|
| 761 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 762 |
]
|
| 763 |
},
|
| 764 |
{
|
| 765 |
"cell_type": "code",
|
| 766 |
-
"execution_count":
|
| 767 |
"id": "cab071f9-7c3b-4b35-a0d1-3687731ffce5",
|
| 768 |
"metadata": {},
|
| 769 |
-
"outputs": [
|
| 770 |
-
{
|
| 771 |
-
"name": "stdout",
|
| 772 |
-
"output_type": "stream",
|
| 773 |
-
"text": [
|
| 774 |
-
"Export successful\n"
|
| 775 |
-
]
|
| 776 |
-
}
|
| 777 |
-
],
|
| 778 |
"source": [
|
| 779 |
"import nbdev\n",
|
| 780 |
"nbdev.export.nb_export('app.ipynb', './')\n",
|
|
|
|
| 20 |
"#| export\n",
|
| 21 |
"from fastai.vision.all import *\n",
|
| 22 |
"import gradio as gr\n",
|
| 23 |
+
"import warnings\n",
|
| 24 |
+
"warnings.filterwarnings('ignore')\n",
|
| 25 |
+
"\n",
|
| 26 |
"title = \"FastAI - Big Cats Classifier\"\n",
|
| 27 |
"description = \"Classify big cats using all Resnet models available pre-trained in FastAI\""
|
| 28 |
]
|
|
|
|
| 44 |
"}\n",
|
| 45 |
"models = list(learners.keys())\n",
|
| 46 |
"\n",
|
| 47 |
+
"active_model = learners[\"resnet-18\"]\n"
|
| 48 |
]
|
| 49 |
},
|
| 50 |
{
|
|
|
|
| 56 |
"source": [
|
| 57 |
"#| export\n",
|
| 58 |
" \n",
|
| 59 |
+
"def classify_image(img):\n",
|
| 60 |
+
" learn = load_learner(active_model)\n",
|
| 61 |
" pred,idx,probs = learn.predict(img)\n",
|
| 62 |
+
" return dict(zip(learn.dls.vocab, map(float, probs)))\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"def select_model(model_name):\n",
|
| 65 |
+
" if model_name not in models:\n",
|
| 66 |
+
" model_name = \"resnet-18\"\n",
|
| 67 |
+
" active_model = learners[model_name]\n",
|
| 68 |
+
" return model_name\n"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
{
|
|
|
|
| 115 |
"name": "stdout",
|
| 116 |
"output_type": "stream",
|
| 117 |
"text": [
|
| 118 |
+
"{'african leopard': 0.0005852991016581655, 'cheetah': 0.9993988275527954, 'clouded leopard': 1.7600793000838166e-07, 'cougar': 6.112059963925276e-06, 'jaguar': 7.491902579204179e-06, 'lion': 1.3097942428430542e-06, 'snow leopard': 6.794325599912554e-07, 'tiger': 1.22832446436405e-07}\n"
|
|
|
|
|
|
|
| 119 |
]
|
| 120 |
},
|
| 121 |
{
|
|
|
|
| 159 |
"name": "stdout",
|
| 160 |
"output_type": "stream",
|
| 161 |
"text": [
|
| 162 |
+
"{'african leopard': 0.2962114214897156, 'cheetah': 2.706606210267637e-05, 'clouded leopard': 0.0008470952161587775, 'cougar': 1.0193979505856987e-05, 'jaguar': 0.701975405216217, 'lion': 1.3766093616141006e-05, 'snow leopard': 0.0008549779886379838, 'tiger': 6.007726915413514e-05}\n"
|
|
|
|
|
|
|
| 163 |
]
|
| 164 |
},
|
| 165 |
{
|
|
|
|
| 203 |
"name": "stdout",
|
| 204 |
"output_type": "stream",
|
| 205 |
"text": [
|
| 206 |
+
"{'african leopard': 2.0210626061611947e-08, 'cheetah': 1.6748231246310752e-08, 'clouded leopard': 1.1174745395692298e-06, 'cougar': 2.63490710494807e-06, 'jaguar': 2.399448703727103e-06, 'lion': 6.196571433747522e-08, 'snow leopard': 2.4245096028607804e-06, 'tiger': 0.9999912977218628}\n"
|
|
|
|
|
|
|
| 207 |
]
|
| 208 |
},
|
| 209 |
{
|
|
|
|
| 247 |
"name": "stdout",
|
| 248 |
"output_type": "stream",
|
| 249 |
"text": [
|
| 250 |
+
"{'african leopard': 9.39465026021935e-05, 'cheetah': 0.00021114452101755887, 'clouded leopard': 8.688175876159221e-05, 'cougar': 0.9761292934417725, 'jaguar': 7.082346655806759e-06, 'lion': 0.02333180606365204, 'snow leopard': 0.00011577722762012854, 'tiger': 2.4006889361771755e-05}\n"
|
|
|
|
|
|
|
| 251 |
]
|
| 252 |
},
|
| 253 |
{
|
|
|
|
| 291 |
"name": "stdout",
|
| 292 |
"output_type": "stream",
|
| 293 |
"text": [
|
| 294 |
+
"{'african leopard': 1.3545766286426897e-08, 'cheetah': 2.635677674334147e-06, 'clouded leopard': 7.659965994832874e-09, 'cougar': 9.957815017003213e-09, 'jaguar': 1.497639772196635e-07, 'lion': 0.9999957084655762, 'snow leopard': 1.294516778216348e-07, 'tiger': 1.2779944427165901e-06}\n"
|
|
|
|
|
|
|
| 295 |
]
|
| 296 |
},
|
| 297 |
{
|
|
|
|
| 335 |
"name": "stdout",
|
| 336 |
"output_type": "stream",
|
| 337 |
"text": [
|
| 338 |
+
"{'african leopard': 0.024091463536024094, 'cheetah': 0.0014163728337734938, 'clouded leopard': 0.008692733943462372, 'cougar': 0.0010448594111949205, 'jaguar': 0.7156786322593689, 'lion': 0.017859801650047302, 'snow leopard': 0.22819218039512634, 'tiger': 0.0030239589978009462}\n"
|
|
|
|
|
|
|
| 339 |
]
|
| 340 |
},
|
| 341 |
{
|
|
|
|
| 379 |
"name": "stdout",
|
| 380 |
"output_type": "stream",
|
| 381 |
"text": [
|
| 382 |
+
"{'african leopard': 7.144178198359441e-06, 'cheetah': 3.725538704202336e-07, 'clouded leopard': 0.9994736313819885, 'cougar': 6.0378228226909414e-05, 'jaguar': 3.279747033957392e-05, 'lion': 1.1806019273308266e-07, 'snow leopard': 0.0003000575816258788, 'tiger': 0.0001255277602467686}\n"
|
|
|
|
|
|
|
| 383 |
]
|
| 384 |
},
|
| 385 |
{
|
|
|
|
| 423 |
"name": "stdout",
|
| 424 |
"output_type": "stream",
|
| 425 |
"text": [
|
| 426 |
+
"{'african leopard': 2.8642458346439525e-05, 'cheetah': 0.00017579919949639589, 'clouded leopard': 0.08972200006246567, 'cougar': 7.897598698036745e-05, 'jaguar': 2.5307128453277983e-05, 'lion': 1.8576161892269738e-05, 'snow leopard': 0.9099361896514893, 'tiger': 1.4485961401078384e-05}\n"
|
|
|
|
|
|
|
| 427 |
]
|
| 428 |
}
|
| 429 |
],
|
|
|
|
| 438 |
},
|
| 439 |
{
|
| 440 |
"cell_type": "code",
|
| 441 |
+
"execution_count": 19,
|
| 442 |
"id": "a48e7483-c04b-4048-a1ae-34a8c7986a57",
|
| 443 |
"metadata": {},
|
| 444 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
{
|
| 446 |
"name": "stdout",
|
| 447 |
"output_type": "stream",
|
| 448 |
"text": [
|
| 449 |
"Running on local URL: http://127.0.0.1:7860\n",
|
|
|
|
| 450 |
"\n",
|
| 451 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
]
|
| 453 |
},
|
| 454 |
{
|
| 455 |
+
"name": "stderr",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
"output_type": "stream",
|
| 457 |
"text": [
|
| 458 |
+
"Traceback (most recent call last):\n",
|
| 459 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/routes.py\", line 321, in run_predict\n",
|
| 460 |
+
" output = await app.blocks.process_api(\n",
|
| 461 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/blocks.py\", line 1015, in process_api\n",
|
| 462 |
+
" result = await self.call_function(fn_index, inputs, iterator, request)\n",
|
| 463 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/gradio/blocks.py\", line 856, in call_function\n",
|
| 464 |
+
" prediction = await anyio.to_thread.run_sync(\n",
|
| 465 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/anyio/to_thread.py\", line 31, in run_sync\n",
|
| 466 |
+
" return await get_asynclib().run_sync_in_worker_thread(\n",
|
| 467 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/anyio/_backends/_asyncio.py\", line 937, in run_sync_in_worker_thread\n",
|
| 468 |
+
" return await future\n",
|
| 469 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/anyio/_backends/_asyncio.py\", line 867, in run\n",
|
| 470 |
+
" result = context.run(func, *args)\n",
|
| 471 |
+
" File \"/var/folders/jk/w8lkkz7n40s81208_5_qd5_80000gn/T/ipykernel_3681/233086315.py\", line 5, in classify_image\n",
|
| 472 |
+
" pred,idx,probs = learn.predict(img)\n",
|
| 473 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/fastai/learner.py\", line 312, in predict\n",
|
| 474 |
+
" dl = self.dls.test_dl([item], rm_type_tfms=rm_type_tfms, num_workers=0)\n",
|
| 475 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/fastai/data/core.py\", line 532, in test_dl\n",
|
| 476 |
+
" test_ds = test_set(self.valid_ds, test_items, rm_tfms=rm_type_tfms, with_labels=with_labels\n",
|
| 477 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/fastai/data/core.py\", line 511, in test_set\n",
|
| 478 |
+
" if rm_tfms is None: rm_tfms = [tl.infer_idx(get_first(test_items)) for tl in test_tls]\n",
|
| 479 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/fastai/data/core.py\", line 511, in <listcomp>\n",
|
| 480 |
+
" if rm_tfms is None: rm_tfms = [tl.infer_idx(get_first(test_items)) for tl in test_tls]\n",
|
| 481 |
+
" File \"/Users/ajithj/Library/Python/3.8/lib/python/site-packages/fastai/data/core.py\", line 405, in infer_idx\n",
|
| 482 |
+
" assert idx < len(self.types), f\"Expected an input of type in \\n{pretty_types}\\n but got {type(x)}\"\n",
|
| 483 |
+
"AssertionError: Expected an input of type in \n",
|
| 484 |
+
" - <class 'pathlib.PosixPath'>\n",
|
| 485 |
+
" - <class 'pathlib.Path'>\n",
|
| 486 |
+
" - <class 'str'>\n",
|
| 487 |
+
" - <class 'torch.Tensor'>\n",
|
| 488 |
+
" - <class 'numpy.ndarray'>\n",
|
| 489 |
+
" - <class 'bytes'>\n",
|
| 490 |
+
" - <class 'fastai.vision.core.PILImage'>\n",
|
| 491 |
+
" but got <class 'NoneType'>\n"
|
| 492 |
]
|
| 493 |
},
|
| 494 |
{
|
|
|
|
| 528 |
"metadata": {},
|
| 529 |
"output_type": "display_data"
|
| 530 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
{
|
| 532 |
"data": {
|
| 533 |
"text/html": [
|
|
|
|
| 565 |
"metadata": {},
|
| 566 |
"output_type": "display_data"
|
| 567 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
{
|
| 569 |
"data": {
|
| 570 |
"text/html": [
|
|
|
|
| 606 |
"name": "stdout",
|
| 607 |
"output_type": "stream",
|
| 608 |
"text": [
|
| 609 |
+
"Keyboard interruption in main thread... closing server.\n"
|
|
|
|
| 610 |
]
|
| 611 |
},
|
| 612 |
{
|
| 613 |
"data": {
|
| 614 |
+
"text/plain": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
},
|
| 616 |
+
"execution_count": 19,
|
| 617 |
"metadata": {},
|
| 618 |
+
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
}
|
| 620 |
],
|
| 621 |
"source": [
|
| 622 |
"#| export\n",
|
|
|
|
|
|
|
|
|
|
| 623 |
"example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ]\n",
|
| 624 |
+
"\n",
|
| 625 |
+
"demo = gr.Blocks()\n",
|
| 626 |
+
"with demo:\n",
|
| 627 |
+
" with gr.Column(variant=\"panel\"):\n",
|
| 628 |
+
" image = gr.inputs.Image(label=\"Pick an image\")\n",
|
| 629 |
+
" model = gr.inputs.Dropdown(label=\"Select a model\", choices=models)\n",
|
| 630 |
+
" model.change(fn=select_model, inputs=model, outputs=None)\n",
|
| 631 |
+
" btnClassify = gr.Button(\"Classify\")\n",
|
| 632 |
+
" with gr.Column(variant=\"panel\"):\n",
|
| 633 |
+
" result = gr.outputs.Label(label=\"Result\")\n",
|
| 634 |
+
" \n",
|
| 635 |
+
" btnClassify.click(fn=classify_image, inputs=image, outputs=result)\n",
|
| 636 |
+
" img_gallery = gr.Examples(examples=example_images, inputs=image)\n",
|
| 637 |
+
"\n",
|
| 638 |
+
"demo.launch(debug=True, inline=False)\n",
|
| 639 |
+
" # intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )\n",
|
| 640 |
+
" # if __name__ == \"__main__\":\n",
|
| 641 |
+
" # intf.launch(debug=True, inline=False)\n"
|
| 642 |
]
|
| 643 |
},
|
| 644 |
{
|
| 645 |
"cell_type": "code",
|
| 646 |
+
"execution_count": null,
|
| 647 |
"id": "cab071f9-7c3b-4b35-a0d1-3687731ffce5",
|
| 648 |
"metadata": {},
|
| 649 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 650 |
"source": [
|
| 651 |
"import nbdev\n",
|
| 652 |
"nbdev.export.nb_export('app.ipynb', './')\n",
|
app.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
-
__all__ = ['title', 'description', 'learners', 'models', '
|
| 5 |
-
'
|
| 6 |
|
| 7 |
# %% app.ipynb 1
|
| 8 |
from fastai.vision.all import *
|
| 9 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 10 |
title = "FastAI - Big Cats Classifier"
|
| 11 |
description = "Classify big cats using all Resnet models available pre-trained in FastAI"
|
| 12 |
|
|
@@ -20,23 +23,40 @@ learners = {
|
|
| 20 |
}
|
| 21 |
models = list(learners.keys())
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
# %% app.ipynb 3
|
| 26 |
-
def classify_image(img
|
| 27 |
-
learn = load_learner(
|
| 28 |
pred,idx,probs = learn.predict(img)
|
| 29 |
-
print(pred, idx, probs)
|
| 30 |
return dict(zip(learn.dls.vocab, map(float, probs)))
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# %% app.ipynb 5
|
| 34 |
-
image = gr.inputs.Image()
|
| 35 |
-
model = gr.inputs.Dropdown(choices=models)
|
| 36 |
-
label = gr.outputs.Label()
|
| 37 |
example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ]
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
+
__all__ = ['title', 'description', 'learners', 'models', 'active_model', 'example_images', 'demo', 'classify_image',
|
| 5 |
+
'select_model']
|
| 6 |
|
| 7 |
# %% app.ipynb 1
|
| 8 |
from fastai.vision.all import *
|
| 9 |
import gradio as gr
|
| 10 |
+
import warnings
|
| 11 |
+
warnings.filterwarnings('ignore')
|
| 12 |
+
|
| 13 |
title = "FastAI - Big Cats Classifier"
|
| 14 |
description = "Classify big cats using all Resnet models available pre-trained in FastAI"
|
| 15 |
|
|
|
|
| 23 |
}
|
| 24 |
models = list(learners.keys())
|
| 25 |
|
| 26 |
+
active_model = learners["resnet-18"]
|
| 27 |
+
|
| 28 |
|
| 29 |
# %% app.ipynb 3
|
| 30 |
+
def classify_image(img):
|
| 31 |
+
learn = load_learner(active_model)
|
| 32 |
pred,idx,probs = learn.predict(img)
|
|
|
|
| 33 |
return dict(zip(learn.dls.vocab, map(float, probs)))
|
| 34 |
|
| 35 |
+
def select_model(model_name):
|
| 36 |
+
if model_name not in models:
|
| 37 |
+
model_name = "resnet-18"
|
| 38 |
+
active_model = learners[model_name]
|
| 39 |
+
return model_name
|
| 40 |
+
|
| 41 |
|
| 42 |
# %% app.ipynb 5
|
|
|
|
|
|
|
|
|
|
| 43 |
example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ]
|
| 44 |
+
|
| 45 |
+
demo = gr.Blocks()
|
| 46 |
+
with demo:
|
| 47 |
+
with gr.Column(variant="panel"):
|
| 48 |
+
image = gr.inputs.Image(label="Pick an image")
|
| 49 |
+
model = gr.inputs.Dropdown(label="Select a model", choices=models)
|
| 50 |
+
model.change(fn=select_model, inputs=model, outputs=None)
|
| 51 |
+
btnClassify = gr.Button("Classify")
|
| 52 |
+
with gr.Column(variant="panel"):
|
| 53 |
+
result = gr.outputs.Label(label="Result")
|
| 54 |
+
|
| 55 |
+
btnClassify.click(fn=classify_image, inputs=image, outputs=result)
|
| 56 |
+
img_gallery = gr.Examples(examples=example_images, inputs=image)
|
| 57 |
+
|
| 58 |
+
demo.launch(debug=True, inline=False)
|
| 59 |
+
# intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description )
|
| 60 |
+
# if __name__ == "__main__":
|
| 61 |
+
# intf.launch(debug=True, inline=False)
|
| 62 |
|