Spaces:
Runtime error
Runtime error
Merge branch 'main' of hf.co:spaces/longtrinhquang/TTS-Talker
Browse files- .dockerignore +2 -0
- Dockerfile +5 -0
- README.md +66 -11
- app.py +42 -30
- app_tts.py +4 -2
- docker-compose.yaml +18 -13
- src/generate_batch.py +13 -2
- utils/clear_results.sh +10 -0
- utils/entrypoint.sh +11 -0
- utils/prepare_environment.py +17 -8
.dockerignore
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
.python-version
|
| 2 |
.backup
|
| 3 |
backup
|
|
|
|
|
|
|
|
|
| 1 |
.python-version
|
| 2 |
.backup
|
| 3 |
backup
|
| 4 |
+
results/
|
| 5 |
+
tts_cache/
|
Dockerfile
CHANGED
|
@@ -26,6 +26,7 @@ RUN apt-get update && \
|
|
| 26 |
libxmlsec1-dev \
|
| 27 |
libffi-dev \
|
| 28 |
liblzma-dev && \
|
|
|
|
| 29 |
apt-get clean && \
|
| 30 |
rm -rf /var/lib/apt/lists/*
|
| 31 |
|
|
@@ -48,6 +49,7 @@ COPY --chown=1000 requirements.txt /tmp/requirements.txt
|
|
| 48 |
RUN pip install --no-cache-dir -U -r /tmp/requirements.txt
|
| 49 |
|
| 50 |
COPY --chown=1000 . ${HOME}/app
|
|
|
|
| 51 |
RUN ls -a
|
| 52 |
ENV PYTHONPATH=${HOME}/app \
|
| 53 |
PYTHONUNBUFFERED=1 \
|
|
@@ -56,4 +58,7 @@ ENV PYTHONPATH=${HOME}/app \
|
|
| 56 |
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 57 |
GRADIO_THEME=huggingface \
|
| 58 |
SYSTEM=spaces
|
|
|
|
|
|
|
|
|
|
| 59 |
CMD ["python", "app.py"]
|
|
|
|
| 26 |
libxmlsec1-dev \
|
| 27 |
libffi-dev \
|
| 28 |
liblzma-dev && \
|
| 29 |
+
apt-get install -y cron && \
|
| 30 |
apt-get clean && \
|
| 31 |
rm -rf /var/lib/apt/lists/*
|
| 32 |
|
|
|
|
| 49 |
RUN pip install --no-cache-dir -U -r /tmp/requirements.txt
|
| 50 |
|
| 51 |
COPY --chown=1000 . ${HOME}/app
|
| 52 |
+
RUN chmod +x ${HOME}/app/utils/clear_results.sh ${HOME}/app/utils/entrypoint.sh
|
| 53 |
RUN ls -a
|
| 54 |
ENV PYTHONPATH=${HOME}/app \
|
| 55 |
PYTHONUNBUFFERED=1 \
|
|
|
|
| 58 |
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 59 |
GRADIO_THEME=huggingface \
|
| 60 |
SYSTEM=spaces
|
| 61 |
+
|
| 62 |
+
USER root
|
| 63 |
+
ENTRYPOINT ["/home/user/app/utils/entrypoint.sh"]
|
| 64 |
CMD ["python", "app.py"]
|
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 😭
|
| 4 |
colorFrom: purple
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.45.0
|
| 8 |
python_version: 3.10.18
|
|
@@ -11,39 +11,94 @@ pinned: false
|
|
| 11 |
license: mit
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
```
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
sudo apt-get update
|
| 25 |
sudo apt-get install sox ffmpeg
|
| 26 |
```
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
### Backup
|
| 33 |
|
| 34 |
```bash
|
|
|
|
| 35 |
tar -czvf /backup/data_cache_backup.tar.gz /home/user/.cache
|
|
|
|
|
|
|
| 36 |
tar -czvf /backup/data_gfpgan_backup.tar.gz /home/user/app/gfpgan
|
| 37 |
```
|
| 38 |
|
| 39 |
-
### Restore
|
| 40 |
|
| 41 |
```bash
|
|
|
|
| 42 |
mkdir -p /home/user/.cache
|
| 43 |
cd /home/user/.cache
|
| 44 |
tar -xzvf /backup/data_cache_backup.tar.gz --strip 1
|
| 45 |
|
|
|
|
| 46 |
mkdir -p /home/user/app/gfpgan
|
| 47 |
cd /home/user/app/gfpgan
|
| 48 |
tar -xzvf /backup/data_gfpgan_backup.tar.gz --strip 1
|
| 49 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Atalink-TTS-Talker
|
| 3 |
emoji: 😭
|
| 4 |
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.45.0
|
| 8 |
python_version: 3.10.18
|
|
|
|
| 11 |
license: mit
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# 😭 Atalink-TTS-Talker
|
| 15 |
|
| 16 |
+
A Hugging Face Space powered by **Gradio**.
|
| 17 |
+
This project demonstrates **SadTalker** with local environment setup, backup/restore guides, and Docker deployment.
|
| 18 |
|
| 19 |
+
|
| 20 |
+
## Reference: [Spaces Config Docs](https://huggingface.co/docs/hub/spaces-config-reference)
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
### Use local:
|
| 25 |
+
|
| 26 |
+
## 🖥️ Local Setup
|
| 27 |
+
|
| 28 |
+
### 1. Python environment
|
| 29 |
+
|
| 30 |
+
- Use **Python 3.10**
|
| 31 |
+
|
| 32 |
+
```bash
|
| 33 |
+
python -m venv .venv
|
| 34 |
+
source .venv/bin/activate
|
| 35 |
```
|
| 36 |
|
| 37 |
+
### 2. Install PyTorch with CUDA 12.4
|
| 38 |
+
|
| 39 |
+
```bash
|
| 40 |
+
pip install torch==2.4.0+cu124 torchaudio==2.4.0+cu124 torchvision==0.19.0 --extra-index-url https://download.pytorch.org/whl/cu124
|
| 41 |
```
|
| 42 |
+
|
| 43 |
+
### 3. Install dependencies
|
| 44 |
+
|
| 45 |
+
```bash
|
| 46 |
sudo apt-get update
|
| 47 |
sudo apt-get install sox ffmpeg
|
| 48 |
```
|
| 49 |
|
| 50 |
+
---
|
| 51 |
+
|
| 52 |
+
## 💾 Backup & Restore Volumes
|
| 53 |
|
| 54 |
+
> ⚠️ Make sure you **mount the backup folder** into the container before running these commands.
|
| 55 |
|
| 56 |
+
### 🔹 Backup
|
| 57 |
|
| 58 |
```bash
|
| 59 |
+
# Cache
|
| 60 |
tar -czvf /backup/data_cache_backup.tar.gz /home/user/.cache
|
| 61 |
+
|
| 62 |
+
# GFPGAN data
|
| 63 |
tar -czvf /backup/data_gfpgan_backup.tar.gz /home/user/app/gfpgan
|
| 64 |
```
|
| 65 |
|
| 66 |
+
### 🔹 Restore
|
| 67 |
|
| 68 |
```bash
|
| 69 |
+
# Restore cache
|
| 70 |
mkdir -p /home/user/.cache
|
| 71 |
cd /home/user/.cache
|
| 72 |
tar -xzvf /backup/data_cache_backup.tar.gz --strip 1
|
| 73 |
|
| 74 |
+
# Restore GFPGAN
|
| 75 |
mkdir -p /home/user/app/gfpgan
|
| 76 |
cd /home/user/app/gfpgan
|
| 77 |
tar -xzvf /backup/data_gfpgan_backup.tar.gz --strip 1
|
| 78 |
```
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
## 🚀 Running the App
|
| 83 |
+
|
| 84 |
+
1. Create and activate Python 3.10 environment
|
| 85 |
+
2. Prepare environment:
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
python utils/prepare_environment.py
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
3. Start with Docker Compose:
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
docker compose up -d
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
4. If you change code, rebuild:
|
| 98 |
+
```bash
|
| 99 |
+
docker compose up -d --build
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
✨ Done! You can now run **SadTalker** locally or deploy with Docker.
|
app.py
CHANGED
|
@@ -46,7 +46,8 @@ def download_model():
|
|
| 46 |
|
| 47 |
def list_videos():
|
| 48 |
# Lấy danh sách tất cả file mp4 trong results
|
| 49 |
-
|
|
|
|
| 50 |
# Trả về danh sách file (có thể sort theo thời gian)
|
| 51 |
return sorted(video_files, reverse=True)
|
| 52 |
|
|
@@ -77,23 +78,27 @@ def generate_voice_and_video(
|
|
| 77 |
blink_every,
|
| 78 |
):
|
| 79 |
import gradio as gr
|
|
|
|
| 80 |
# Bắt đầu: Hiển thị trạng thái đang tạo audio
|
| 81 |
yield (
|
| 82 |
gr.update(value=None, visible=True, interactive=False),
|
| 83 |
gr.update(value=None, visible=True, interactive=False),
|
| 84 |
-
gr.update(value="⏳ Đang tạo âm thanh...", visible=True)
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
# 1. Sinh audio từ TTS
|
| 88 |
(final_sample_rate, final_wave), _ = infer_tts(ref_audio, ref_text, gen_text, speed)
|
| 89 |
tmp_audio = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
| 90 |
import soundfile as sf
|
|
|
|
| 91 |
sf.write(tmp_audio.name, final_wave, final_sample_rate)
|
| 92 |
# Audio xong, chuyển sang tạo video
|
| 93 |
yield (
|
| 94 |
gr.update(value=tmp_audio.name, visible=True, interactive=True),
|
| 95 |
gr.update(value=None, visible=True, interactive=False),
|
| 96 |
-
gr.update(value="⏳ Đang tạo video...", visible=True)
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
# 2. Gọi SadTalker với audio vừa sinh ra
|
|
@@ -120,7 +125,8 @@ def generate_voice_and_video(
|
|
| 120 |
yield (
|
| 121 |
gr.update(value=tmp_audio.name, visible=True, interactive=True),
|
| 122 |
gr.update(value=video_path, visible=True, interactive=True),
|
| 123 |
-
gr.update(value="✅ Hoàn thành!", visible=True)
|
|
|
|
| 124 |
)
|
| 125 |
def list_files(directory):
|
| 126 |
try:
|
|
@@ -234,7 +240,12 @@ def sadtalker_demo():
|
|
| 234 |
gen_video = gr.Video(
|
| 235 |
label="Video đã tạo", format="mp4", scale=1, width=180
|
| 236 |
)
|
| 237 |
-
status_box = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
def enable_generate(audio, text, image):
|
| 240 |
return gr.update(interactive=bool(audio and text and image))
|
|
@@ -249,36 +260,12 @@ def sadtalker_demo():
|
|
| 249 |
enable_generate, [ref_audio, gen_text, source_image], btn_generate
|
| 250 |
)
|
| 251 |
|
| 252 |
-
btn_generate.click(
|
| 253 |
-
generate_voice_and_video,
|
| 254 |
-
inputs=[
|
| 255 |
-
ref_audio,
|
| 256 |
-
ref_text,
|
| 257 |
-
gen_text,
|
| 258 |
-
speed,
|
| 259 |
-
source_image,
|
| 260 |
-
preprocess_type,
|
| 261 |
-
is_still_mode,
|
| 262 |
-
enhancer,
|
| 263 |
-
batch_size,
|
| 264 |
-
size_of_image,
|
| 265 |
-
pose_style,
|
| 266 |
-
facerender,
|
| 267 |
-
exp_weight,
|
| 268 |
-
use_ref_video,
|
| 269 |
-
ref_video,
|
| 270 |
-
ref_info,
|
| 271 |
-
use_idle_mode,
|
| 272 |
-
length_of_audio,
|
| 273 |
-
blink_every,
|
| 274 |
-
],
|
| 275 |
-
outputs=[output_audio, gen_video, status_box],
|
| 276 |
-
)
|
| 277 |
with gr.Tab("Lịch sử video"):
|
| 278 |
with gr.Row(elem_classes="gr-row"):
|
| 279 |
refresh_btn = gr.Button("🔄 Refresh File List")
|
| 280 |
|
| 281 |
video_list = gr.Dropdown(
|
|
|
|
| 282 |
choices=list_videos(),
|
| 283 |
label="Chọn video để xem",
|
| 284 |
interactive=True,
|
|
@@ -296,6 +283,31 @@ def sadtalker_demo():
|
|
| 296 |
|
| 297 |
directory_input.change(fn=list_files, inputs=directory_input, outputs=file_list_output)
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
return sadtalker_interface
|
| 300 |
|
| 301 |
|
|
|
|
| 46 |
|
| 47 |
def list_videos():
|
| 48 |
# Lấy danh sách tất cả file mp4 trong results
|
| 49 |
+
PATH_RESULTS = "results"
|
| 50 |
+
video_files = glob.glob(f"{PATH_RESULTS}/**/*.mp4", recursive=True)
|
| 51 |
# Trả về danh sách file (có thể sort theo thời gian)
|
| 52 |
return sorted(video_files, reverse=True)
|
| 53 |
|
|
|
|
| 78 |
blink_every,
|
| 79 |
):
|
| 80 |
import gradio as gr
|
| 81 |
+
|
| 82 |
# Bắt đầu: Hiển thị trạng thái đang tạo audio
|
| 83 |
yield (
|
| 84 |
gr.update(value=None, visible=True, interactive=False),
|
| 85 |
gr.update(value=None, visible=True, interactive=False),
|
| 86 |
+
gr.update(value="⏳ Đang tạo âm thanh...", visible=True),
|
| 87 |
+
gr.update(choices=list_videos()),
|
| 88 |
)
|
| 89 |
|
| 90 |
# 1. Sinh audio từ TTS
|
| 91 |
(final_sample_rate, final_wave), _ = infer_tts(ref_audio, ref_text, gen_text, speed)
|
| 92 |
tmp_audio = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
| 93 |
import soundfile as sf
|
| 94 |
+
|
| 95 |
sf.write(tmp_audio.name, final_wave, final_sample_rate)
|
| 96 |
# Audio xong, chuyển sang tạo video
|
| 97 |
yield (
|
| 98 |
gr.update(value=tmp_audio.name, visible=True, interactive=True),
|
| 99 |
gr.update(value=None, visible=True, interactive=False),
|
| 100 |
+
gr.update(value="⏳ Đang tạo video...", visible=True),
|
| 101 |
+
gr.update(choices=list_videos()),
|
| 102 |
)
|
| 103 |
|
| 104 |
# 2. Gọi SadTalker với audio vừa sinh ra
|
|
|
|
| 125 |
yield (
|
| 126 |
gr.update(value=tmp_audio.name, visible=True, interactive=True),
|
| 127 |
gr.update(value=video_path, visible=True, interactive=True),
|
| 128 |
+
gr.update(value="✅ Hoàn thành!", visible=True),
|
| 129 |
+
gr.update(choices=list_videos(), value=video_path),
|
| 130 |
)
|
| 131 |
def list_files(directory):
|
| 132 |
try:
|
|
|
|
| 240 |
gen_video = gr.Video(
|
| 241 |
label="Video đã tạo", format="mp4", scale=1, width=180
|
| 242 |
)
|
| 243 |
+
status_box = gr.Textbox(
|
| 244 |
+
label="Trạng thái tiến trình",
|
| 245 |
+
interactive=False,
|
| 246 |
+
value="",
|
| 247 |
+
visible=True,
|
| 248 |
+
)
|
| 249 |
|
| 250 |
def enable_generate(audio, text, image):
|
| 251 |
return gr.update(interactive=bool(audio and text and image))
|
|
|
|
| 260 |
enable_generate, [ref_audio, gen_text, source_image], btn_generate
|
| 261 |
)
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
with gr.Tab("Lịch sử video"):
|
| 264 |
with gr.Row(elem_classes="gr-row"):
|
| 265 |
refresh_btn = gr.Button("🔄 Refresh File List")
|
| 266 |
|
| 267 |
video_list = gr.Dropdown(
|
| 268 |
+
value=list_videos()[0] if len(list_videos()) > 0 else None,
|
| 269 |
choices=list_videos(),
|
| 270 |
label="Chọn video để xem",
|
| 271 |
interactive=True,
|
|
|
|
| 283 |
|
| 284 |
directory_input.change(fn=list_files, inputs=directory_input, outputs=file_list_output)
|
| 285 |
|
| 286 |
+
btn_generate.click(
|
| 287 |
+
generate_voice_and_video,
|
| 288 |
+
inputs=[
|
| 289 |
+
ref_audio,
|
| 290 |
+
ref_text,
|
| 291 |
+
gen_text,
|
| 292 |
+
speed,
|
| 293 |
+
source_image,
|
| 294 |
+
preprocess_type,
|
| 295 |
+
is_still_mode,
|
| 296 |
+
enhancer,
|
| 297 |
+
batch_size,
|
| 298 |
+
size_of_image,
|
| 299 |
+
pose_style,
|
| 300 |
+
facerender,
|
| 301 |
+
exp_weight,
|
| 302 |
+
use_ref_video,
|
| 303 |
+
ref_video,
|
| 304 |
+
ref_info,
|
| 305 |
+
use_idle_mode,
|
| 306 |
+
length_of_audio,
|
| 307 |
+
blink_every,
|
| 308 |
+
],
|
| 309 |
+
outputs=[output_audio, gen_video, status_box, video_list],
|
| 310 |
+
)
|
| 311 |
return sadtalker_interface
|
| 312 |
|
| 313 |
|
app_tts.py
CHANGED
|
@@ -34,6 +34,7 @@ from pathlib import Path
|
|
| 34 |
from omegaconf import OmegaConf
|
| 35 |
from datetime import datetime
|
| 36 |
import hashlib
|
|
|
|
| 37 |
# Retrieve token from secrets
|
| 38 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 39 |
|
|
@@ -173,7 +174,8 @@ def infer_tts(ref_audio_orig: str, ref_text_input: str, gen_text: str, speed: fl
|
|
| 173 |
try:
|
| 174 |
# Nếu người dùng nhập ref_text thì dùng, không thì để rỗng để tự động nhận diện
|
| 175 |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text_input or "")
|
| 176 |
-
|
|
|
|
| 177 |
# --- BẮT ĐẦU: Thêm logic cache ---
|
| 178 |
cache_path = get_audio_cache_path(gen_text_, ref_audio_orig, model)
|
| 179 |
import soundfile as sf
|
|
@@ -183,7 +185,7 @@ def infer_tts(ref_audio_orig: str, ref_text_input: str, gen_text: str, speed: fl
|
|
| 183 |
spectrogram = None
|
| 184 |
else:
|
| 185 |
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 186 |
-
ref_audio, ref_text
|
| 187 |
)
|
| 188 |
print(f"[CACHE] Saved new audio to: {cache_path}")
|
| 189 |
sf.write(cache_path, final_wave, final_sample_rate)
|
|
|
|
| 34 |
from omegaconf import OmegaConf
|
| 35 |
from datetime import datetime
|
| 36 |
import hashlib
|
| 37 |
+
import unicodedata
|
| 38 |
# Retrieve token from secrets
|
| 39 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 40 |
|
|
|
|
| 174 |
try:
|
| 175 |
# Nếu người dùng nhập ref_text thì dùng, không thì để rỗng để tự động nhận diện
|
| 176 |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text_input or "")
|
| 177 |
+
ref_text = unicodedata.normalize("NFC", ref_text.strip())
|
| 178 |
+
gen_text_ = unicodedata.normalize("NFC", gen_text.strip())
|
| 179 |
# --- BẮT ĐẦU: Thêm logic cache ---
|
| 180 |
cache_path = get_audio_cache_path(gen_text_, ref_audio_orig, model)
|
| 181 |
import soundfile as sf
|
|
|
|
| 185 |
spectrogram = None
|
| 186 |
else:
|
| 187 |
final_wave, final_sample_rate, spectrogram = infer_process(
|
| 188 |
+
ref_audio, ref_text, gen_text_, ema_model, vocoder, speed=speed
|
| 189 |
)
|
| 190 |
print(f"[CACHE] Saved new audio to: {cache_path}")
|
| 191 |
sf.write(cache_path, final_wave, final_sample_rate)
|
docker-compose.yaml
CHANGED
|
@@ -1,20 +1,25 @@
|
|
| 1 |
services:
|
| 2 |
-
|
| 3 |
build: .
|
| 4 |
ports:
|
| 5 |
-
-
|
| 6 |
-
stdin_open: true
|
| 7 |
-
tty: true
|
| 8 |
-
restart:
|
| 9 |
-
|
| 10 |
-
|
|
|
|
| 11 |
volumes:
|
| 12 |
-
-
|
| 13 |
-
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
volumes:
|
| 17 |
-
|
| 18 |
external: true
|
| 19 |
-
|
| 20 |
external: true
|
|
|
|
| 1 |
services:
|
| 2 |
+
atalink-tts-talker:
|
| 3 |
build: .
|
| 4 |
ports:
|
| 5 |
+
- '7860:7860'
|
| 6 |
+
stdin_open: true # equivalent to -it
|
| 7 |
+
tty: true # equivalent to -it
|
| 8 |
+
restart: 'no' # equivalent to --rm (don’t restart container automatically)
|
| 9 |
+
environment:
|
| 10 |
+
- PATH_RESULTS= /app/results
|
| 11 |
+
# - HF_ENDPOINT=http://172.16.15.118:9557/repository/atalink-hf-models
|
| 12 |
volumes:
|
| 13 |
+
- atalink_data_cache:/home/user/.cache
|
| 14 |
+
- atalink_data_gfpgan:/home/user/app/gfpgan
|
| 15 |
+
# # - ./backup:/backup
|
| 16 |
+
deploy:
|
| 17 |
+
resources:
|
| 18 |
+
reservations:
|
| 19 |
+
devices:
|
| 20 |
+
- capabilities: [gpu]
|
| 21 |
volumes:
|
| 22 |
+
atalink_data_cache:
|
| 23 |
external: true
|
| 24 |
+
atalink_data_gfpgan:
|
| 25 |
external: true
|
src/generate_batch.py
CHANGED
|
@@ -77,8 +77,18 @@ def get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, stil
|
|
| 77 |
m = spec[seq, :]
|
| 78 |
indiv_mels.append(m.T)
|
| 79 |
indiv_mels = np.asarray(indiv_mels) # T 80 16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
ratio = generate_blink_seq_randomly(num_frames) # T
|
| 82 |
source_semantics_path = first_coeff_path
|
| 83 |
source_semantics_dict = scio.loadmat(source_semantics_path)
|
| 84 |
ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70
|
|
@@ -93,7 +103,8 @@ def get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, stil
|
|
| 93 |
div = num_frames//refeyeblink_num_frames
|
| 94 |
re = num_frames%refeyeblink_num_frames
|
| 95 |
refeyeblink_coeff_list = [refeyeblink_coeff for i in range(div)]
|
| 96 |
-
|
|
|
|
| 97 |
refeyeblink_coeff = np.concatenate(refeyeblink_coeff_list, axis=0)
|
| 98 |
print(refeyeblink_coeff.shape[0])
|
| 99 |
|
|
|
|
| 77 |
m = spec[seq, :]
|
| 78 |
indiv_mels.append(m.T)
|
| 79 |
indiv_mels = np.asarray(indiv_mels) # T 80 16
|
| 80 |
+
if num_frames < 20:
|
| 81 |
+
print(f"[WARN] num_frames={num_frames} too small, enable still_mode / skip blink.")
|
| 82 |
+
still = True
|
| 83 |
+
use_blink = False
|
| 84 |
+
|
| 85 |
+
# Blink ratio
|
| 86 |
+
if use_blink and not still:
|
| 87 |
+
ratio = generate_blink_seq_randomly(num_frames) # T × 1
|
| 88 |
+
else:
|
| 89 |
+
ratio = np.zeros((num_frames, 1)) # không blink
|
| 90 |
|
| 91 |
+
# ratio = generate_blink_seq_randomly(num_frames) # T
|
| 92 |
source_semantics_path = first_coeff_path
|
| 93 |
source_semantics_dict = scio.loadmat(source_semantics_path)
|
| 94 |
ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70
|
|
|
|
| 103 |
div = num_frames//refeyeblink_num_frames
|
| 104 |
re = num_frames%refeyeblink_num_frames
|
| 105 |
refeyeblink_coeff_list = [refeyeblink_coeff for i in range(div)]
|
| 106 |
+
if re > 0:
|
| 107 |
+
refeyeblink_coeff_list.append(refeyeblink_coeff[:re, :64])
|
| 108 |
refeyeblink_coeff = np.concatenate(refeyeblink_coeff_list, axis=0)
|
| 109 |
print(refeyeblink_coeff.shape[0])
|
| 110 |
|
utils/clear_results.sh
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/sh
|
| 2 |
+
# Xóa toàn bộ dữ liệu trong thư mục /app/results vào 10h tối mỗi ngày
|
| 3 |
+
# Thêm dòng sau vào crontab khi build docker
|
| 4 |
+
# 0 22 * * * /app/clear_results.sh
|
| 5 |
+
|
| 6 |
+
rm -rf /app/results/*
|
| 7 |
+
echo "[CRON] Đã xóa dữ liệu trong /app/results lúc $(date)" >> /app/clear_results.log
|
| 8 |
+
|
| 9 |
+
rm -rf /app/tts_cache/*
|
| 10 |
+
echo "[CRON] Đã xóa dữ liệu trong /app/tts_cache lúc $(date)" >> /app/clear_tts_cache.log
|
utils/entrypoint.sh
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
set -e
|
| 3 |
+
# Đảm bảo /var/run tồn tại và user có quyền ghi
|
| 4 |
+
mkdir -p /var/run
|
| 5 |
+
chmod 777 /var/run
|
| 6 |
+
# Cài crontab với job xóa results
|
| 7 |
+
crontab -l 2>/dev/null | { cat; echo "0 22 * * * /home/user/app/utils/clear_results.sh"; } | crontab -
|
| 8 |
+
# Start cron background
|
| 9 |
+
cron
|
| 10 |
+
# Start app.py (foreground)
|
| 11 |
+
exec "$@"
|
utils/prepare_environment.py
CHANGED
|
@@ -23,8 +23,8 @@ DOWNLOADS = [
|
|
| 23 |
]
|
| 24 |
|
| 25 |
|
| 26 |
-
TMP_DIR = "
|
| 27 |
-
VOLUME_PREFIX = "
|
| 28 |
|
| 29 |
|
| 30 |
def download_file(url, dest_folder):
|
|
@@ -62,11 +62,11 @@ def create_volume_and_extract(tar_path, volume_name):
|
|
| 62 |
"-v",
|
| 63 |
f"{volume_name}:/data", # Mount Docker volume (volume_name) vào thư mục /data trong container
|
| 64 |
"-v",
|
| 65 |
-
f"{os.path.dirname(tar_path)}:/tmpdata", # Mount thư mục chứa file tar.gz trên host vào /tmpdata trong container
|
| 66 |
"busybox", # Image dùng để chạy container (ở đây là Ubuntu 22.04)
|
| 67 |
-
"
|
| 68 |
"-c", # Chạy lệnh bash trong container
|
| 69 |
-
f"tar -
|
| 70 |
],
|
| 71 |
check=True,
|
| 72 |
)
|
|
@@ -91,10 +91,19 @@ def main():
|
|
| 91 |
VOLUME_PREFIX
|
| 92 |
+ os.path.splitext(os.path.splitext(os.path.basename(tar_path))[0])[0]
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
|
| 98 |
|
| 99 |
if __name__ == "__main__":
|
| 100 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
]
|
| 24 |
|
| 25 |
|
| 26 |
+
TMP_DIR = "tmp"
|
| 27 |
+
VOLUME_PREFIX = "atalink_"
|
| 28 |
|
| 29 |
|
| 30 |
def download_file(url, dest_folder):
|
|
|
|
| 62 |
"-v",
|
| 63 |
f"{volume_name}:/data", # Mount Docker volume (volume_name) vào thư mục /data trong container
|
| 64 |
"-v",
|
| 65 |
+
f"{os.path.abspath(os.path.dirname(tar_path))}:/tmpdata", # Mount thư mục chứa file tar.gz trên host vào /tmpdata trong container
|
| 66 |
"busybox", # Image dùng để chạy container (ở đây là Ubuntu 22.04)
|
| 67 |
+
"sh",
|
| 68 |
"-c", # Chạy lệnh bash trong container
|
| 69 |
+
f"tar -xzvf /tmpdata/{os.path.basename(tar_path)} --strip 1 -C /data", # Lệnh giải nén file tar.gz từ /tmpdata vào /data
|
| 70 |
],
|
| 71 |
check=True,
|
| 72 |
)
|
|
|
|
| 91 |
VOLUME_PREFIX
|
| 92 |
+ os.path.splitext(os.path.splitext(os.path.basename(tar_path))[0])[0]
|
| 93 |
)
|
| 94 |
+
print(f"🚀 [VOLUME] Name: \033[1;33m{volume_name}\033[0m")
|
| 95 |
+
create_volume_and_extract(tar_path, volume_name)
|
| 96 |
+
cleanup_tmp(downloaded_files)
|
| 97 |
|
| 98 |
|
| 99 |
if __name__ == "__main__":
|
| 100 |
main()
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# if __name__ == "__main__":
|
| 104 |
+
# Test create_volume_and_extract với file test_data_backup.tar.gz
|
| 105 |
+
# test_tar = os.path.join("tmp", "data_backup.tar.gz")
|
| 106 |
+
# if os.path.exists(test_tar):
|
| 107 |
+
# create_volume_and_extract(test_tar, "atalink_data_backup")
|
| 108 |
+
# else:
|
| 109 |
+
# print("File tmp/test_data_backup.tar.gz không tồn tại để test.")
|