Spaces:
Running
Running
| ''' | |
| This file is part of Open-MoE-LLM-Leaderboard and is modified based on work | |
| under the Apache 2.0 License from the arena-hard project. | |
| (https://github.com/lm-sys/arena-hard) | |
| Original Copyright (c) 2024 Tianle Li*, Wei-Lin Chiang*, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, Ion Stoica | |
| See the NOTICE file distributed with this work for additional | |
| information regarding copyright ownership. | |
| ''' | |
| import os | |
| import json | |
| import time | |
| import yaml | |
| import random | |
| from typing import Optional | |
| from glob import glob | |
| # API setting constants | |
| API_MAX_RETRY = 16 | |
| API_RETRY_SLEEP = 10 | |
| API_ERROR_OUTPUT = "$ERROR$" | |
| OPENAI_MODEL_LIST = ( | |
| "gpt-3.5-turbo", | |
| "gpt-3.5-turbo-0301", | |
| "gpt-3.5-turbo-0613", | |
| "gpt-3.5-turbo-0613-verbose", | |
| "gpt-3.5-turbo-1106", | |
| "gpt-3.5-turbo-0125", | |
| "gpt-4", | |
| "gpt-4-0314", | |
| "gpt-4-0613", | |
| "gpt-4-turbo", | |
| "gpt-4-1106-preview", | |
| "gpt-4-0125-preview", | |
| ) | |
| temperature_config = { | |
| "writing": 0.7, | |
| "roleplay": 0.7, | |
| "extraction": 0.0, | |
| "math": 0.0, | |
| "coding": 0.0, | |
| "reasoning": 0.0, | |
| "stem": 0.1, | |
| "humanities": 0.1, | |
| } | |
| def load_questions(question_file: str): | |
| """Load questions from a file.""" | |
| questions = [] | |
| with open(question_file, "r") as ques_file: | |
| for line in ques_file: | |
| if line: | |
| questions.append(json.loads(line)) | |
| return questions | |
| def load_model_answers(answer_dir: str): | |
| """Load model answers. | |
| The return value is a python dict of type: | |
| Dict[model_name: str -> Dict[question_id: int -> answer: dict]] | |
| """ | |
| filenames = glob(os.path.join(answer_dir, "*.jsonl")) | |
| filenames.sort() | |
| model_answers = {} | |
| for filename in filenames: | |
| model_name = os.path.basename(filename)[:-6] | |
| answer = {} | |
| with open(filename) as fin: | |
| for line in fin: | |
| line = json.loads(line) | |
| answer[line["question_id"]] = line | |
| model_answers[model_name] = answer | |
| return model_answers | |
| def get_endpoint(endpoint_list): | |
| if endpoint_list is None: | |
| return None | |
| assert endpoint_list is not None | |
| # randomly pick one | |
| api_dict = random.choices( | |
| endpoint_list | |
| )[0] | |
| return api_dict | |
| # load config args from config yaml files | |
| def make_config(config_file: str) -> dict: | |
| config_kwargs = {} | |
| with open(config_file, "r") as f: | |
| config_kwargs = yaml.load(f, Loader=yaml.SafeLoader) | |
| return config_kwargs | |
| def chat_completion_openai(model, messages, temperature, max_tokens, api_dict=None): | |
| import openai | |
| if api_dict: | |
| client = openai.OpenAI( | |
| base_url=api_dict["api_base"], | |
| api_key=api_dict["api_key"], | |
| ) | |
| else: | |
| client = openai.OpenAI() | |
| output = API_ERROR_OUTPUT | |
| for _ in range(API_MAX_RETRY): | |
| try: | |
| # print(messages) | |
| completion = client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| temperature=temperature, | |
| max_tokens=max_tokens | |
| ) | |
| output = completion.choices[0].message.content | |
| break | |
| except openai.RateLimitError as e: | |
| print(type(e), e) | |
| time.sleep(API_RETRY_SLEEP) | |
| except openai.BadRequestError as e: | |
| print(messages) | |
| print(type(e), e) | |
| except KeyError: | |
| print(type(e), e) | |
| break | |
| return output | |
| # def chat_completion_openai_azure(model, messages, temperature, max_tokens, api_dict=None): | |
| # import openai | |
| # from openai import AzureOpenAI | |
| # api_base = api_dict["api_base"] | |
| # client = AzureOpenAI( | |
| # azure_endpoint = api_base, | |
| # api_key= api_dict["api_key"], | |
| # api_version=api_dict["api_version"], | |
| # timeout=240, | |
| # max_retries=2 | |
| # ) | |
| # output = API_ERROR_OUTPUT | |
| # for _ in range(API_MAX_RETRY): | |
| # try: | |
| # response = client.chat.completions.create( | |
| # model=model, | |
| # messages=messages, | |
| # n=1, | |
| # temperature=temperature, | |
| # max_tokens=max_tokens, | |
| # seed=42, | |
| # ) | |
| # output = response.choices[0].message.content | |
| # break | |
| # except openai.RateLimitError as e: | |
| # print(type(e), e) | |
| # time.sleep(API_RETRY_SLEEP) | |
| # except openai.BadRequestError as e: | |
| # print(type(e), e) | |
| # break | |
| # except KeyError: | |
| # print(type(e), e) | |
| # break | |
| # return output | |
| # def chat_completion_anthropic(model, messages, temperature, max_tokens, api_dict=None): | |
| # import anthropic | |
| # if api_dict: | |
| # api_key = api_dict["api_key"] | |
| # else: | |
| # api_key = os.environ["ANTHROPIC_API_KEY"] | |
| # sys_msg = "" | |
| # if messages[0]["role"] == "system": | |
| # sys_msg = messages[0]["content"] | |
| # messages = messages[1:] | |
| # output = API_ERROR_OUTPUT | |
| # for _ in range(API_MAX_RETRY): | |
| # try: | |
| # # print(sys_msg) | |
| # c = anthropic.Anthropic(api_key=api_key) | |
| # response = c.messages.create( | |
| # model=model, | |
| # messages=messages, | |
| # stop_sequences=[anthropic.HUMAN_PROMPT], | |
| # max_tokens=max_tokens, | |
| # temperature=temperature, | |
| # system=sys_msg | |
| # ) | |
| # output = response.content[0].text | |
| # break | |
| # except anthropic.APIError as e: | |
| # print(type(e), e) | |
| # time.sleep(API_RETRY_SLEEP) | |
| # return output | |
| # def chat_completion_mistral(model, messages, temperature, max_tokens): | |
| # from mistralai.client import MistralClient | |
| # from mistralai.models.chat_completion import ChatMessage | |
| # from mistralai.exceptions import MistralException | |
| # api_key = os.environ["MISTRAL_API_KEY"] | |
| # client = MistralClient(api_key=api_key) | |
| # prompts = [ChatMessage(role=message["role"], content=message["content"]) for message in messages] | |
| # output = API_ERROR_OUTPUT | |
| # for _ in range(API_MAX_RETRY): | |
| # try: | |
| # chat_response = client.chat( | |
| # model=model, | |
| # messages=prompts, | |
| # temperature=temperature, | |
| # max_tokens=max_tokens, | |
| # ) | |
| # output = chat_response.choices[0].message.content | |
| # break | |
| # except MistralException as e: | |
| # print(type(e), e) | |
| # break | |
| # return output | |
| # def chat_completion_gemini(model, messages, temperature, max_tokens): | |
| # import google.generativeai as genai | |
| # genai.configure(api_key=os.environ["GEMINI_API_KEY"]) | |
| # safety_settings = [ | |
| # { | |
| # "category": "HARM_CATEGORY_HARASSMENT", | |
| # "threshold": "BLOCK_NONE" | |
| # }, | |
| # { | |
| # "category": "HARM_CATEGORY_HATE_SPEECH", | |
| # "threshold": "BLOCK_NONE" | |
| # }, | |
| # { | |
| # "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", | |
| # "threshold": "BLOCK_NONE" | |
| # }, | |
| # { | |
| # "category": "HARM_CATEGORY_DANGEROUS_CONTENT", | |
| # "threshold": "BLOCK_NONE" | |
| # }, | |
| # ] | |
| # # Set up the model | |
| # generation_config = { | |
| # "temperature": temperature, | |
| # "top_p": 1, | |
| # "top_k": 1, | |
| # "max_output_tokens": max_tokens, | |
| # } | |
| # output = API_ERROR_OUTPUT | |
| # for _ in range(API_MAX_RETRY): | |
| # try: | |
| # gemini = genai.GenerativeModel( | |
| # model_name=model, | |
| # generation_config=generation_config, | |
| # safety_settings=safety_settings) | |
| # convo = gemini.start_chat(history=[]) | |
| # convo.send_message(messages) | |
| # output = convo.last.text | |
| # break | |
| # except genai.types.generation_types.StopCandidateException as e: | |
| # print(type(e), e) | |
| # break | |
| # except Exception as e: | |
| # print(type(e), e) | |
| # time.sleep(API_RETRY_SLEEP) | |
| # return output | |
| # def chat_completion_cohere(model, messages, temperature, max_tokens): | |
| # import cohere | |
| # co = cohere.Client(os.environ["COHERE_API_KEY"]) | |
| # assert len(messages) > 0 | |
| # template_map = {"system":"SYSTEM", | |
| # "assistant":"CHATBOT", | |
| # "user":"USER"} | |
| # assert messages[-1]["role"] == "user" | |
| # prompt = messages[-1]["content"] | |
| # if len(messages) > 1: | |
| # history = [] | |
| # for message in messages[:-1]: | |
| # history.append({"role":template_map[message["role"]], "message":message["content"]}) | |
| # else: | |
| # history = None | |
| # output = API_ERROR_OUTPUT | |
| # for _ in range(API_MAX_RETRY): | |
| # try: | |
| # response = co.chat( | |
| # message=prompt, | |
| # model=model, | |
| # temperature=temperature, | |
| # max_tokens=max_tokens, | |
| # chat_history=history, | |
| # ) | |
| # output = response.text | |
| # break | |
| # except cohere.core.api_error.ApiError as e: | |
| # print(type(e), e) | |
| # raise | |
| # except Exception as e: | |
| # print(type(e), e) | |
| # break | |
| # return output | |
| def reorg_answer_file(answer_file): | |
| """Sort by question id and de-duplication""" | |
| answers = {} | |
| with open(answer_file, "r") as fin: | |
| for l in fin: | |
| qid = json.loads(l)["question_id"] | |
| answers[qid] = l | |
| qids = sorted(list(answers.keys())) | |
| with open(answer_file, "w") as fout: | |
| for qid in qids: | |
| fout.write(answers[qid]) |