Add 1000 db
Browse files- app.py +11 -9
- data/amazon_1000.csv +0 -0
- data/imdb_100.csv +0 -0
- data/imdb_1000.csv +0 -0
- data/twitter_1000.csv +0 -0
- data/z_employee.csv +0 -26
- data/z_sentences.csv +0 -11
app.py
CHANGED
|
@@ -9,6 +9,12 @@ from scripts.gender_distribution import *
|
|
| 9 |
|
| 10 |
methodologies = json.load(open("config/methodologies.json", "r"))
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
MAX_THRESHOLD = 5000
|
| 13 |
DATASET_CACHE = {}
|
| 14 |
|
|
@@ -16,7 +22,7 @@ DATASET_CACHE = {}
|
|
| 16 |
def evaluate(dataset, sampling_method, sampling_size, column, methodology):
|
| 17 |
try:
|
| 18 |
print(
|
| 19 |
-
f"[{dataset.name.split('/')[-1]}::{column}] - {sampling_method} {sampling_size} entries"
|
| 20 |
)
|
| 21 |
data = DATASET_CACHE.setdefault(dataset.name, pd.read_csv(dataset.name))[
|
| 22 |
[column]
|
|
@@ -125,16 +131,12 @@ with BiasAware:
|
|
| 125 |
)
|
| 126 |
|
| 127 |
with gr.Row():
|
| 128 |
-
with gr.Column(scale=
|
| 129 |
gr.Markdown("## Dataset")
|
| 130 |
|
| 131 |
dataset_file = gr.File(label="Dataset", file_types=["csv"])
|
| 132 |
dataset_examples = gr.Examples(
|
| 133 |
-
|
| 134 |
-
os.path.join(os.path.dirname(__file__), "data/imdb_100.csv"),
|
| 135 |
-
os.path.join(os.path.dirname(__file__), "data/z_employee.csv"),
|
| 136 |
-
os.path.join(os.path.dirname(__file__), "data/z_sentences.csv"),
|
| 137 |
-
],
|
| 138 |
inputs=dataset_file,
|
| 139 |
label="Example Datasets",
|
| 140 |
)
|
|
@@ -147,7 +149,7 @@ with BiasAware:
|
|
| 147 |
row_count=(5, "fixed"), col_count=(1, "fixed"), visible=False
|
| 148 |
)
|
| 149 |
|
| 150 |
-
with gr.Column(scale=
|
| 151 |
gr.Markdown("## Methodology")
|
| 152 |
|
| 153 |
methodology = gr.Radio(
|
|
@@ -160,7 +162,7 @@ with BiasAware:
|
|
| 160 |
|
| 161 |
methodology_metadata = gr.Markdown(visible=False)
|
| 162 |
|
| 163 |
-
with gr.Column(scale=
|
| 164 |
result = gr.Markdown("## Result")
|
| 165 |
|
| 166 |
result_plot = gr.Plot(show_label=False, container=False, visible=False)
|
|
|
|
| 9 |
|
| 10 |
methodologies = json.load(open("config/methodologies.json", "r"))
|
| 11 |
|
| 12 |
+
datasets = [
|
| 13 |
+
os.path.join(os.path.dirname(__file__), "data", f)
|
| 14 |
+
for f in os.listdir(os.path.join(os.path.dirname(__file__), "data"))
|
| 15 |
+
if f.endswith(".csv")
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
MAX_THRESHOLD = 5000
|
| 19 |
DATASET_CACHE = {}
|
| 20 |
|
|
|
|
| 22 |
def evaluate(dataset, sampling_method, sampling_size, column, methodology):
|
| 23 |
try:
|
| 24 |
print(
|
| 25 |
+
f"[{dataset.name.split('/')[-1]}::{column}] - {sampling_method} {sampling_size} entries using {methodology}"
|
| 26 |
)
|
| 27 |
data = DATASET_CACHE.setdefault(dataset.name, pd.read_csv(dataset.name))[
|
| 28 |
[column]
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
+
with gr.Column(scale=1):
|
| 135 |
gr.Markdown("## Dataset")
|
| 136 |
|
| 137 |
dataset_file = gr.File(label="Dataset", file_types=["csv"])
|
| 138 |
dataset_examples = gr.Examples(
|
| 139 |
+
examples=datasets,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
inputs=dataset_file,
|
| 141 |
label="Example Datasets",
|
| 142 |
)
|
|
|
|
| 149 |
row_count=(5, "fixed"), col_count=(1, "fixed"), visible=False
|
| 150 |
)
|
| 151 |
|
| 152 |
+
with gr.Column(scale=1):
|
| 153 |
gr.Markdown("## Methodology")
|
| 154 |
|
| 155 |
methodology = gr.Radio(
|
|
|
|
| 162 |
|
| 163 |
methodology_metadata = gr.Markdown(visible=False)
|
| 164 |
|
| 165 |
+
with gr.Column(scale=2):
|
| 166 |
result = gr.Markdown("## Result")
|
| 167 |
|
| 168 |
result_plot = gr.Plot(show_label=False, container=False, visible=False)
|
data/amazon_1000.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/imdb_100.csv
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/imdb_1000.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/twitter_1000.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/z_employee.csv
DELETED
|
@@ -1,26 +0,0 @@
|
|
| 1 |
-
EmployeeID,FirstName,LastName,Email,Department,Salary
|
| 2 |
-
101,John,Smith,john.smith@example.com,Finance,60000
|
| 3 |
-
102,Emily,Johnson,emily.johnson@example.com,Marketing,55000
|
| 4 |
-
103,Michael,Williams,michael.williams@example.com,HR,50000
|
| 5 |
-
104,Susan,Anderson,susan.anderson@example.com,IT,65000
|
| 6 |
-
105,David,Martin,david.martin@example.com,Sales,58000
|
| 7 |
-
106,Linda,Davis,linda.davis@example.com,Finance,62000
|
| 8 |
-
107,William,Miller,william.miller@example.com,Marketing,56000
|
| 9 |
-
108,Sarah,Anderson,sarah.anderson@example.com,HR,51000
|
| 10 |
-
109,Robert,Clark,robert.clark@example.com,IT,67000
|
| 11 |
-
110,Karen,Wilson,karen.wilson@example.com,Sales,59000
|
| 12 |
-
111,James,Brown,james.brown@example.com,Finance,61000
|
| 13 |
-
112,Anna,Johnson,anna.johnson@example.com,Marketing,57000
|
| 14 |
-
113,Christopher,Moore,christopher.moore@example.com,HR,52000
|
| 15 |
-
114,Laura,White,laura.white@example.com,IT,68000
|
| 16 |
-
115,Mark,Davis,mark.davis@example.com,Sales,60000
|
| 17 |
-
116,Patricia,Jones,patricia.jones@example.com,Finance,63000
|
| 18 |
-
117,Matthew,Taylor,matthew.taylor@example.com,Marketing,58000
|
| 19 |
-
118,Jennifer,Young,jennifer.young@example.com,HR,53000
|
| 20 |
-
119,Steven,Anderson,steven.anderson@example.com,IT,69000
|
| 21 |
-
120,Elizabeth,Thomas,elizabeth.thomas@example.com,Sales,61000
|
| 22 |
-
121,Kevin,Harris,kevin.harris@example.com,Finance,64000
|
| 23 |
-
122,Deborah,Smith,deborah.smith@example.com,Marketing,59000
|
| 24 |
-
123,Joseph,Walker,joseph.walker@example.com,HR,54000
|
| 25 |
-
124,Cynthia,Jackson,cynthia.jackson@example.com,IT,70000
|
| 26 |
-
125,Daniel,Hall,daniel.hall@example.com,Sales,62000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/z_sentences.csv
DELETED
|
@@ -1,11 +0,0 @@
|
|
| 1 |
-
ID,Sentences,Gender Bias Test
|
| 2 |
-
1,The doctor examined the patient.,Neutral
|
| 3 |
-
2,The teacher helped the student with their homework.,Neutral
|
| 4 |
-
3,The engineer designed the new software.,Neutral
|
| 5 |
-
4,The nurse cared for the sick child.,Neutral
|
| 6 |
-
5,The chef prepared a delicious meal.,Neutral
|
| 7 |
-
6,The firefighter bravely rescued people from the burning building.,Neutral
|
| 8 |
-
7,The police officer maintained law and order in the city.,Neutral
|
| 9 |
-
8,The scientist conducted groundbreaking research.,Neutral
|
| 10 |
-
9,The artist created a beautiful masterpiece.,Neutral
|
| 11 |
-
10,The CEO made important decisions for the company.,Neutral
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|