Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,10 +6,6 @@ feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-ima
|
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 7 |
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
model.to(device)
|
| 14 |
|
| 15 |
|
|
@@ -24,14 +20,10 @@ def predict_step(image_paths):
|
|
| 24 |
i_image = Image.open(image_path)
|
| 25 |
if i_image.mode != "RGB":
|
| 26 |
i_image = i_image.convert(mode="RGB")
|
| 27 |
-
|
| 28 |
images.append(i_image)
|
| 29 |
-
|
| 30 |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
| 31 |
pixel_values = pixel_values.to(device)
|
| 32 |
-
|
| 33 |
output_ids = model.generate(pixel_values, **gen_kwargs)
|
| 34 |
-
|
| 35 |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 36 |
preds = [pred.strip() for pred in preds]
|
| 37 |
return preds
|
|
@@ -52,12 +44,16 @@ description= "NLP Image Understanding"
|
|
| 52 |
title = "NLP Image Understanding"
|
| 53 |
article = "nlpconnect/vit-gpt2-image-captioning"
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
interface = gr.Interface(
|
| 56 |
fn=predict,
|
| 57 |
inputs = input,
|
| 58 |
theme="grass",
|
| 59 |
outputs=output,
|
| 60 |
-
examples =
|
| 61 |
title=title,
|
| 62 |
description=description,
|
| 63 |
article = article,
|
|
|
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 7 |
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model.to(device)
|
| 10 |
|
| 11 |
|
|
|
|
| 20 |
i_image = Image.open(image_path)
|
| 21 |
if i_image.mode != "RGB":
|
| 22 |
i_image = i_image.convert(mode="RGB")
|
|
|
|
| 23 |
images.append(i_image)
|
|
|
|
| 24 |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
| 25 |
pixel_values = pixel_values.to(device)
|
|
|
|
| 26 |
output_ids = model.generate(pixel_values, **gen_kwargs)
|
|
|
|
| 27 |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 28 |
preds = [pred.strip() for pred in preds]
|
| 29 |
return preds
|
|
|
|
| 44 |
title = "NLP Image Understanding"
|
| 45 |
article = "nlpconnect/vit-gpt2-image-captioning"
|
| 46 |
|
| 47 |
+
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
|
| 48 |
+
output = gr.outputs.Textbox(type="auto",label="Captions")
|
| 49 |
+
examples = [['35-Favorite-Games.jpg']]
|
| 50 |
+
|
| 51 |
interface = gr.Interface(
|
| 52 |
fn=predict,
|
| 53 |
inputs = input,
|
| 54 |
theme="grass",
|
| 55 |
outputs=output,
|
| 56 |
+
examples = examples,
|
| 57 |
title=title,
|
| 58 |
description=description,
|
| 59 |
article = article,
|