Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,156 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
@st.experimental_memo
|
| 4 |
def foo(x):
|
| 5 |
return x**2
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import altair as alt
|
| 7 |
+
import pydeck as pdk
|
| 8 |
+
|
| 9 |
+
# SETTING PAGE CONFIG TO WIDE MODE AND ADDING A TITLE AND FAVICON
|
| 10 |
+
st.set_page_config(layout="wide", page_title="NYC Ridesharing Demo", page_icon=":taxi:")
|
| 11 |
+
|
| 12 |
+
# LOAD DATA ONCE
|
| 13 |
+
@st.experimental_singleton
|
| 14 |
+
def load_data():
|
| 15 |
+
data = pd.read_csv(
|
| 16 |
+
"uber-raw-data-sep14.csv.gz",
|
| 17 |
+
nrows=100000, # approx. 10% of data
|
| 18 |
+
names=[
|
| 19 |
+
"date/time",
|
| 20 |
+
"lat",
|
| 21 |
+
"lon",
|
| 22 |
+
], # specify names directly since they don't change
|
| 23 |
+
skiprows=1, # don't read header since names specified directly
|
| 24 |
+
usecols=[0, 1, 2], # doesn't load last column, constant value "B02512"
|
| 25 |
+
parse_dates=[
|
| 26 |
+
"date/time"
|
| 27 |
+
], # set as datetime instead of converting after the fact
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
return data
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# FUNCTION FOR AIRPORT MAPS
|
| 34 |
+
def map(data, lat, lon, zoom):
|
| 35 |
+
st.write(
|
| 36 |
+
pdk.Deck(
|
| 37 |
+
map_style="mapbox://styles/mapbox/light-v9",
|
| 38 |
+
initial_view_state={
|
| 39 |
+
"latitude": lat,
|
| 40 |
+
"longitude": lon,
|
| 41 |
+
"zoom": zoom,
|
| 42 |
+
"pitch": 50,
|
| 43 |
+
},
|
| 44 |
+
layers=[
|
| 45 |
+
pdk.Layer(
|
| 46 |
+
"HexagonLayer",
|
| 47 |
+
data=data,
|
| 48 |
+
get_position=["lon", "lat"],
|
| 49 |
+
radius=100,
|
| 50 |
+
elevation_scale=4,
|
| 51 |
+
elevation_range=[0, 1000],
|
| 52 |
+
pickable=True,
|
| 53 |
+
extruded=True,
|
| 54 |
+
),
|
| 55 |
+
],
|
| 56 |
+
)
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# FILTER DATA FOR A SPECIFIC HOUR, CACHE
|
| 61 |
+
@st.experimental_memo
|
| 62 |
+
def filterdata(df, hour_selected):
|
| 63 |
+
return df[df["date/time"].dt.hour == hour_selected]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# CALCULATE MIDPOINT FOR GIVEN SET OF DATA
|
| 67 |
+
@st.experimental_memo
|
| 68 |
+
def mpoint(lat, lon):
|
| 69 |
+
return (np.average(lat), np.average(lon))
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# FILTER DATA BY HOUR
|
| 73 |
+
@st.experimental_memo
|
| 74 |
+
def histdata(df, hr):
|
| 75 |
+
filtered = data[
|
| 76 |
+
(df["date/time"].dt.hour >= hr) & (df["date/time"].dt.hour < (hr + 1))
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
hist = np.histogram(filtered["date/time"].dt.minute, bins=60, range=(0, 60))[0]
|
| 80 |
+
|
| 81 |
+
return pd.DataFrame({"minute": range(60), "pickups": hist})
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# STREAMLIT APP LAYOUT
|
| 85 |
+
data = load_data()
|
| 86 |
+
|
| 87 |
+
# LAYING OUT THE TOP SECTION OF THE APP
|
| 88 |
+
row1_1, row1_2 = st.columns((2, 3))
|
| 89 |
+
|
| 90 |
+
with row1_1:
|
| 91 |
+
st.title("NYC Uber Ridesharing Data")
|
| 92 |
+
hour_selected = st.slider("Select hour of pickup", 0, 23)
|
| 93 |
+
|
| 94 |
+
with row1_2:
|
| 95 |
+
st.write(
|
| 96 |
+
"""
|
| 97 |
+
##
|
| 98 |
+
Examining how Uber pickups vary over time in New York City's and at its major regional airports.
|
| 99 |
+
By sliding the slider on the left you can view different slices of time and explore different transportation trends.
|
| 100 |
+
"""
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# LAYING OUT THE MIDDLE SECTION OF THE APP WITH THE MAPS
|
| 104 |
+
row2_1, row2_2, row2_3, row2_4 = st.columns((2, 1, 1, 1))
|
| 105 |
+
|
| 106 |
+
# SETTING THE ZOOM LOCATIONS FOR THE AIRPORTS
|
| 107 |
+
la_guardia = [40.7900, -73.8700]
|
| 108 |
+
jfk = [40.6650, -73.7821]
|
| 109 |
+
newark = [40.7090, -74.1805]
|
| 110 |
+
zoom_level = 12
|
| 111 |
+
midpoint = mpoint(data["lat"], data["lon"])
|
| 112 |
+
|
| 113 |
+
with row2_1:
|
| 114 |
+
st.write(
|
| 115 |
+
f"""**All New York City from {hour_selected}:00 and {(hour_selected + 1) % 24}:00**"""
|
| 116 |
+
)
|
| 117 |
+
map(filterdata(data, hour_selected), midpoint[0], midpoint[1], 11)
|
| 118 |
+
|
| 119 |
+
with row2_2:
|
| 120 |
+
st.write("**La Guardia Airport**")
|
| 121 |
+
map(filterdata(data, hour_selected), la_guardia[0], la_guardia[1], zoom_level)
|
| 122 |
+
|
| 123 |
+
with row2_3:
|
| 124 |
+
st.write("**JFK Airport**")
|
| 125 |
+
map(filterdata(data, hour_selected), jfk[0], jfk[1], zoom_level)
|
| 126 |
+
|
| 127 |
+
with row2_4:
|
| 128 |
+
st.write("**Newark Airport**")
|
| 129 |
+
map(filterdata(data, hour_selected), newark[0], newark[1], zoom_level)
|
| 130 |
+
|
| 131 |
+
# CALCULATING DATA FOR THE HISTOGRAM
|
| 132 |
+
chart_data = histdata(data, hour_selected)
|
| 133 |
+
|
| 134 |
+
# LAYING OUT THE HISTOGRAM SECTION
|
| 135 |
+
st.write(
|
| 136 |
+
f"""**Breakdown of rides per minute between {hour_selected}:00 and {(hour_selected + 1) % 24}:00**"""
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
st.altair_chart(
|
| 140 |
+
alt.Chart(chart_data)
|
| 141 |
+
.mark_area(
|
| 142 |
+
interpolate="step-after",
|
| 143 |
+
)
|
| 144 |
+
.encode(
|
| 145 |
+
x=alt.X("minute:Q", scale=alt.Scale(nice=False)),
|
| 146 |
+
y=alt.Y("pickups:Q"),
|
| 147 |
+
tooltip=["minute", "pickups"],
|
| 148 |
+
)
|
| 149 |
+
.configure_mark(opacity=0.2, color="red"),
|
| 150 |
+
use_container_width=True,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
@st.experimental_memo
|
| 155 |
def foo(x):
|
| 156 |
return x**2
|